Hill Publishing Group | contact@hillpublisher.com

Hill Publishing Group

Location:Home / Journals / Journal of Applied Mathematics and Computation /

DOI:http://dx.doi.org/10.26855/jamc.2019.09.001

Mathematical morphology approach for single-channel processing of auscultative sound

Author: Alexandr G. Rudnitskii
Date: November 13,2019 Hits: 193

Abstract

The problem of isolating breath and cardiac sounds in the total signal registered on a human thorax has been of interest to physicians and researchers in the last two decades. Many algorithms have been developed to address this issue. In this paper we propose a new technique for isolating respiratory sound from a combined signal registered on the chest wall. The method is based on a hybrid algorithm using a mathematical morphological approach and spectral subtraction technique. This approach has been tested both on the artificially simulated data and on real auscultative sounds. Evaluation of efficiency by means of auditory, visual and numerical analysis shown that the proposed strategy is a promising alternative to existing technologies of separation of auscultative signals on its natural components.

References

[1] Savage N. (2010) Medical imagers lower the dose. IEEE Spectr., 47, N. 3, 14–15.
[2] Charbonneau G., Raccineux J.L., Sudraud M., and Tuchais E. (1983) An accurate recording system and its use in breath sounds spectral analysis J. Appl. Physiol. 55, 1120.
[3] Gavriely N., Palti Y., and Alroy G. (1981) Spectral characteristics of normal breath sounds. J. Appl. Physiol. 50, 307.
[4] Iyer V.K., Ramamoorthy P.A., Fan H. and Ploysongsang Y. (1986) Reduction of heart sounds from lung sounds by adaptive filtering. J. IEEE Trans. Biomed. Eng., 33, N. 12, 1141-1148.
[5] Hadjileontiadis L.J., Panas S.M. (1998) A wavelet based reduction of heart sounds noise from lung sounds, International Journal of Medical Informatics 52 (October-December), 183-190.
[6] Tinati M.A., Bouzerdoum A., Mazumdar J. (1996) Modified adaptive line enhancement filter and its application to heart sound noise cancellation, in: Proceeding of the International Symposium on Signal Processing and its Applications (ISSPA), 2, 815-818.
[7] Charleston S., Azimi-Sadjadi M.R. (1997) Reduced order Kalman filtering for the enhancement of respiratory sounds. IEEE Transactions on Biomedical Engineering 44, October (10), 1006-1019.
[8] Hadjileontiadis L.J., Panas S.M. (1998) A wavelet based reduction of heart sounds noise from lung sounds, International Journal of Medical Informatics, 52 (October-December), 183-190.
[9] Ergen B., Tatar V. (2001) The analysis of heart sounds based on linear and high order statistical methods, in: Proceedings of the 23rd Annual International Conference of the IEEE-Engineering in Medicine and Biology Society, 2139-2141.
[10] Rudnitskii A.G. (2001) Two-Channel Processing of Signals for the Separation of Breath and Cardiac Sounds Acoustical Physics, 47, N. 3, 353-360.
[11] Messer S.R., Agzarian J., Abbott D. (2001) Optimal wavelet denoising for phonocardiograms. Microelectronics Journal, 32, December (12), 931-941.
[12] Pourazad M., Moussavi Z., Farahmand F., Ward R. (2005) Heart sounds separation from lung sounds using independent component analysis, in: Proceedings of the Conference of the IEEE-Engineering in Medicine and Biology Society, 3, 2736-2739.
[13] Flores-Tapia D., Moussavi Z.M., Thomas G. (2007) Heart sound cancellation based on multiscale products and linear prediction. IEEE Transactions on Biomedical Engineering, 54, February (2), 234-243.
[14] Rudnitskii A.G. (2014) Using Nonlocal Means to Separate Cardiac and Respiration Sounds. Acoustical Physics60, N. 6, 719-726.
[15] Rudnitskii A.G. (2015) Heart sound cancellation from lung sound recordings using empirical mode decomposition technique. Proceedings of the 40th International Lung Sounds Association Conference, 58-59.
[16] Gnitecki J. and Moussavi Z. (2007) Separating heart sounds from lung sounds. IEEE Eng. Med. Biol. Mag. 26, 20-29.
[17] Matheron G. (1975) Random sets and integral geometry. John Wiley & Sons, New York,.
[18] Haralick, R.M., Sternberg, S.R., Zhuang, X. (1987) Image analysis using mathematical morphology. IEEE Trans. PAMI, 9, N. 4, 532-550.
[19] Boll S. (1979) Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. Acoust. Speech, Signal Process., 27, 113-120.
[20] Minkowski H., (1903) Volumen und Oberfläche. Math. Ann., 57, 447-495.
[21] Heijmans, H. J. A. M. (1994). Morphological image operators. Advances in electronics and electron physics, supplement. Academic Press, Boston, MA.
[22] “R.a.l.e. repository” [online], http://www.rale.ca/Recordings.htm.
[23] Gavriely N, Palti Y, Alroy G. (1981) Spectral characteristics of normal breath sounds. J Appl Physiol Respir Environ Exerc Physiol., 50, N. 2, 307-314.
[24] Makarenkov A.P. and Rudnitskii A. G. (1995) Diagnosis of lung pathologies by two-channel processing of breathing sounds. Acoust. Phys., 41, 234-238.

Full-Text HTML

Mathematical morphology approach for single-channel processing of auscultative sound
Alexandr G. Rudnitskii
Institute of Hydromechanics, National Academy of Sciences of Ukraine, ul. Zhelyaebova 8/4, Kyiv, 03680 Ukraine
How to cite this paper: Rudnitskii A. G. (2019). Mathematical morphology approach for single-channel processing of auscultative sound. Journal o f Applied Mathematics and Computation, 3(5), 616-626.
DOI: http://dx.doi.org/10.26855/jamc.2019.09.001
Free HPG Newsletters

Add your e-mail address to receive free newsletters from Hill Publishing Group.

Contact us

Hill Publishing Group

8825 53rd Ave

Elmhurst, NY 11373, USA

E-mail: contact@hillpublisher.com

Copyright © 2019 Hill Publishing Group Inc. All Rights Reserved.