Hill Publishing Group | contact@hillpublisher.com

Hill Publishing Group

Location:Home / Journals / Journal of Electrical Power & Energy Systems /

DOI:http://dx.doi.org/10.26855/jepes.2020.05.001

Factual Power Loss Diminution by Enriched Artificial Fish Swarm Algorithm

Kanagasabai Lenin

Department of EEEPrasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada, Andhra Pradesh -520007, India.

*Corresponding author: Kanagasabai LeninDepartment of EEEPrasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada, Andhra Pradesh -520007, India.

PDF Downloads
Date: May 8,2020 Hits: 431, How to cite this paper

Abstract

In this work Enriched Artificial Fish swarm (EAFS) algorithm is projected to solve optimal reactive power problem. In the proposed algorithm, food concentration function, bulletin board approach, target position search mechanism, and position move method are utilized. Subsequently, an adjustment strategy of exploration range of artificial fish, which merge the global search with local search, is projected to enhance the explore capability of the projected algorithm. Every artificial fish will execute the swarming behavior, following behavior and foraging behavior in order to discover the goal move position Xinext with the superior food concentration. The position with the uppermost food concentration of the new-fangled positions (Xnext1, Xnext2 andXnext3) are found by these behaviours’ is used as Xinext. Proposed Enriched Artificial Fish swarm (EAFS) algorithm has been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show the projected algorithm reduced the real power loss comprehensively.

References

[1] K. Y. Lee. (1984). Fuel-cost minimisation for both real and reactive-power dispatches,” Proceedings Generation, Transmission and Distribution Conference, vol/issue: 131(3), pp. 85-93.

[2] N. I. Deeb. (1998). An efficient technique for reactive power dispatch using a revised linear programming approach. Electric Power System Research, vol/issue: 15(2), pp. 121-134.

[3] M. R. Bjelogrlic, M. S. Calovic, B. S. Babic. (1990). Application of Newton’s optimal power flow in voltage/reactive power control. IEEE Trans Power System, vol. 5, no. 4, pp. 1447-1454.

[4] S. Granville. (1994). Optimal reactive dispatch through interior point methods. IEEE Transactions on Power System, vol/issue: 9(1), pp. 136-146.

[5] N. Grudinin. (1998). Reactive power optimization using successive quadratic programming method. IEEE Transactions on Power System, vol/issue: 13(4), pp. 1219-1225.

[6] Ng Shin Mei, R., Sulaiman, M.H., Mustaffa, Z., Daniyal, H. (2017). Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique. Appl. Soft Comput. 2017, 59, 210-222.

[7] Chen, G., Liu, L., Zhang, Z., Huang, S. (2017). Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints. Appl. Soft Comput. 2017, 50, 58-70.

[8] Naderi, E., Narimani, H., Fathi, M., Narimani, M.R. (2017). A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch. Appl. Soft Comput. 2017, 53, 441-456.

[9] Heidari, A.A., Ali Abbaspour, R., Rezaee Jordehi. (2017). A. Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems. Appl. Soft Comput. 2017, 57, 657-671.

[10] Mahaletchumi Morgan, Nor Rul Hasma Abdullah, Mohd Herwan Sulaiman, Mahfuzah Mustafa, Rosdiyana Samad. (2016). Benchmark Studies on Optimal Reactive Power Dispatch (ORPD) Based Multi-objective Evolutionary Programming (MOEP) Using Mutation Based on Adaptive Mutation Adapter (AMO) and Polynomial Mutation Operator (PMO). Journal of Electrical Systems, 12-1.

[11] Rebecca Ng Shin Mei, Mohd Herwan Sulaiman, Zuriani Mustaffa. (2016). Ant Lion Optimizer for Optimal Reactive Power Dispatch Solution. Journal of Electrical Systems, Special Issue AMPE2015, pp. 68-74.

[12] Ram Kishan Mahate, & Himmat Singh. (2019). Multi-Objective Optimal Reactive Power Dispatch Using Differential Evolution. International Journal of Engineering Technologies and Management Research, 6(2), 27-38. 

[13]  Gagliano A., Nocera F. (2017). Analysis of the performances of electric energy storage in residential applications. International Journal of Heat and Technology. Vol. 35, Special Issue 1, pp. S41-S48.

[14] Caldera M., Ungaro P., Cammarata G., Puglisi G. (2018). Survey-based analysis of the electrical energy demand in Italian households. Mathematical Modelling of Engineering Problems, Vol. 5, No. 3, pp. 217-224.

[15] M. Basu. (2016). Quasi-oppositional differential evolution for optimal reactive power dispatch. Electrical Power and Energy Systems, vol. 78, pp. 29-40.

[16] T. Weise. (2009). Global Optimization AlgorithmsTheory and Application, Germany: it-weise.de (self-published), [Online]. Available: http://www.it-weise.de/.

[17] M.A.K. Azad, A.M.A.C. Rocha, E.M.G.P. Fernandes. (2014). A simplified binary artificial fish swarm algorithm for 0-1 quadratic knapsack problems. Journal of Computation Applied Mathematics, 259, 897-904.

[18] IEEE. (1993). “The IEEE-test systems”. http://www.ee.washington.edu/trsearch/pstca/.

[19] Ali Nasser Hussain, Ali Abdulabbas Abdullah and Omar Muhammed Neda. (2018). Modified Particle Swarm Optimization for Solution of Reactive Power Dispatch. Research Journal of Applied Sciences, Engineering and Technology 15(8): 316-327.

[20] S. Surender Reddy. (2017). Optimal Reactive Power Scheduling Using Cuckoo Search Algorithm. International Journal of Electrical and Computer Engineering. Vol. 7, No. 5, pp. 2349-2356.

[21] S.S. Reddy. (2014). Faster evolutionary algorithm based optimal power flow using incremental variables. Electrical Power and Energy Systems, vol. 54, pp. 198-210.

Full-Text HTML

Factual Power Loss Diminution by Enriched Artificial Fish Swarm Algorithm

How to cite this paper: Kanagasabai Lenin. (2020Factual Power Loss Diminution by Enriched Artificial Fish Swarm Algorithm. Journal of Electrical Power & Energy Systems, 4(1), 1-10.

DOI: http://dx.doi.org/10.26855/jepes.2020.05.001


Volumes(Year) & Month

Free HPG Newsletters

Add your e-mail address to receive free newsletters from Hill Publishing Group.

Contact us

Hill Publishing Group

8825 53rd Ave

Elmhurst, NY 11373, USA

E-mail: contact@hillpublisher.com

Copyright © 2019 Hill Publishing Group Inc. All Rights Reserved.