Hill Publishing Group | contact@hillpublisher.com

Hill Publishing Group

Location:Home / Journals / International Journal of Food Science and Agriculture /

DOI:http://dx.doi.org/10.26855/ijfsa.2020.09.010

Alley Cropped Gliricidia sepium (Jacq.) Kunth ex. Walp. Enhance Soil Fertility and Yields of Cotton, Maize and Sorghum in Mali

Salif Doumbia1,*, Sidiki Gabriel Dembele2, Fagaye Sissoko1, Odiaba Samake1, Fernando Sousa3, Cicek Harun3, Noah Adamtey3, Andreas Fliessbach3

1Institut d’Economie Rurale du Mali, Centre Régional de Recherche Agronomique de Sikasso, BP 16, Sikasso, Mali.

2Institut Polytechnique Rural de Formation et de Recherche Appliquée, BP 06 Koulikoro, Katibougou, Mali.

3Research Institute of Organic Agriculture, Department of Soil Sciences, Ackerstrasse 113, CH-5070 Frick, Switzerland.

*Corresponding author: Salif Doumbia

PDF Downloads
Date: September 3,2020 Hits: 210, How to cite this paper

Abstract

Mineral fertilizers are effective in boosting crop yields in most parts of the world. Under tropical conditions and especially in rain-fed arid ecosystems they are not effective, because the limitations of system productivity are stronger at the level of the climatic situation and soil quality. The positive effect of Gliricidia sepium (G. sepium) for: erosion control, shade, hydraulic lift, N-fixation, resource of fodder and soil input convinced the participating farmers to provide part of their land for this study. G. sepium was tested in association with cotton, maize and sorghum in order to develop best practices at two research stations and on fields of 30 farmers in the Sudanese and Sudano-Guinean zones of Mali. In addition to the introduction of G. sepium, the effects of organic and mineral fertilizers we tested at recommended and half rate. On-station experiments design was a split-plot with four replicates. The pH, soil organic carbon and nitrogen in soil samples were analyzed from 0-20 cm depth taken in 2016 at the beginning of the experiment and in 2018. The average yields of cotton, maize and sorghum associated with G. sepium were 812, 1,457 and 1,377 kg ha-1 respectively, whe-reas they were significantly lower without G. sepium reaching only 623, 1,014, and 807 kg ha-1 respectively. In the third year after planting G. sepium, organic carbon contents and total soil nitrogen increased by 5% in soils between the al-leys. Association of G. sepium with cotton, maize, and sorghum showed the im-provement of crop yields and soil nitrogen content in addition to other advantages not considered for testing here. This finding may serve to improve small-scale farmer’slivelihoods status through the improvement of soil fertility in Mali and the whole Sahel region.

References

[1] Breman. H., de Ridder, N. (1991). Manuel sur les pâturages des pays sahéliens. KARTHALA Editions, Wageningen.

[2] Bationo, A., Lompo, F., Koala, S. (1998). Research on nutrient flows and balances in west Africa: state-of-the-art. Int. J. Agric. Ecosys. Environ, 71: 19-35.

[3] Comité Permanent Inter-États de Lutte Contre la Sécheresse dans le Sahel (CILSS). (2002). Réglementation commune aux états membres du CILSS sur l’homologation des pesticides, Ouagadougou, Burkina Faso.

[4] Konaté F. (2008). Démographie - Environnement Croissance démographique et systèmes de production au plateau dogon au Mali(éd.). Tome, P.U.O., Cahiers du CERLESHS: Ouagadougou.

[5] FAO., FIDA., PAM. (2015). L’Etat de l’insecurité alimentaire dans le monde. Objectifs internationaux 2015 de réduction de la faim: des progrès inégaux (éd.). FAO, Rome.

[6] Jones, A., Breuning-Madsen H., Brossard, M., Dampha, A., Deckers, J., Dewitte, O., Gallali, T., Hallett, S., Jones, R., Kilasara, M., Le Roux, P., Micheli, E., Montanarella, L., Spaargaren, O., Thombiano, L., Van Ranst, E., Yemefack, M., Zougmoré, R. (2013). Soil atlas of Africa (éd.). Union Européenne, Luxembourg.

[7] Direction Nationale de l’Agriculture (DNA). (2017). Rapport annuel 2017. In: l’Agriculture, M.d., Ministère de l’Agriculture, Bamako, Mali.

[8] Compagnie Malienne de Développement des Textiles (CMDT) (2018). Annuaire statistique 2016/2017. Résultats de l'enquête agricole permanente. In: (DPCG), D.d.l.p.d.c.g, CMDT, Bamako.

[9] Van der Pol, F., Traore, B. (1993). Soil nutrient depletion by agricultural production in Southern Mali. Fertilizer Research, 36: 79-90. 

[10] Kanté, S. (2001). Gestion de la fertilité des sols par classe d’exploitation au Mali-Sud. Ph.D. Dissertation, Wageningen University, Wageningen.

[11] Sissoko, F., Rapidel, B., Gaborel, C., Renou, A., Aya, O. (2005). Identification des déficiences minérales sur cotonnier au Mali à partir des symptômes visuels.

[12] Dembele, D., Traore, K., Quansah, C., Osei Jnr, E. M., Bocar, D. S. B. A., Ballo, M. (2016). Optimizing Soil Fertility Man-agement Decision in Mali by Remote Sensing and GIS. Int. J. of Agricultural Research, 3(4): 022-034. 

[13] Sissoko, F., Coulibaly, D., Cissé, O., Dugué, P. (2015). Évaluation de l'arrière effet de la culture du coton sur la production céréalière en zone cotonnière du Mali. In: Fok, M.N.O.K.S. (éd.), Conference of African Research on Agriculture, Food and Nutrition, Yamoussoukro.

[14] Pieri, C. (1985). Bilans mineraux des systèmes de cultures pluviales en zones arides et semi-arides. Int. J. L'agronomie tropicale, 40: 1-20.

[15] FAO. (2004). Utilisation des phosphates naturels pour une agriculture durable. Rome, Italy.

[16] Bayala, J., Sanou, J., Teklehaimanot, Z., Kalinganine, A., Ouédraogo, S. J. (2014). Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Int. J. Elsevier, 6: 28-34.

[17] Dossa, E. L., Diedhiou, I., Khouma, M., Sene, M., Badiane, A. N., Samba, N., Samba, A., Assigbetse, K. B., Sall, S., Lufafa, A. (2013). Crop productivity and nutrient dynamics in a shrub-based farming system of the Sahel. Int. J. Agron, 105(4): 1237-1246.

[18] Lahmar, R., Bationo, B. A., Dan Lamso, N., Guéro, Y., Tittonell, P. (2012). Tailoring conservation agriculture technologies to West Africa semi-arid zones: Building on traditional local practices for soil restoration. Int. J. Field Crops Res, 132: 158-167. 

[19] Bado, B. V., Savadogo, P., Manzo, M. L. S. (2016). Restoration of Degraded Lands in West Africa Sahel: Review of experiences in Burkina Faso and Niger. Technical Report, ICRISAT.

[20] Roupsard, O., Ferhi, A., Granier, A., Pallo, F., Depommier, D., Mallet, B., Joly, H. I., Dreyer, E. (1999). Reverse phenology and dry-season water uptake by Faidherbia albida (Del.) A. Chev. in an agroforestry parkland of Sudanese west Africa. Int. J. Functional Ecology, 13: 460-472.

[21] Lufafa, A., Diédhiou, I., Samba, S. A. N., Séné, M., Khouma, M., Kizito, F., Dick, R. P., Dossa, E., Noller, J. S. (2008). Carbon stocks and patterns in native shrub communities of Senegal's Peanut Basin. Int. J. Geoderma, 146: 75-82.

[22] Dossa, E., Khouma, M., Diedhiou, I., Sene, M., Kizito, F., Badiane, A., Samba, S., Dick, R. (2009). Carbon, nitrogen and phosphorus mineralization potential of semiarid Sahelian soils amended with native shrub residues. Int. J. Geoderma, 148: 251-260.

[23] Dossa, E., Diedhiou, I., Khouma, M., Sene, M., Lufafa, A., Kizito, F., Samba, S., Badiane, A., Diedhiou, S., Dick, R. (2012). Crop productivity and nutrient dynamics in a shrub (Guierasenegalensis)–based farming system of the Sahel. Int. J. Agron, 04(5): 1255-1264.

[24] Kizito, F., Dragila, M., Senè, M., Brooks, J., Meinzer, F., Diedhiou, I., Diouf, M., Lufafa, A., Dick, R., Selker, J. (2012). Hy-draulic redistribution by two semi-arid shrub species: Implications for Sahelian agro-ecosystems. Int. J. Arid Environ, 83: 69-77.

[25] Bogie, N. A., Bayala, R., Diedhiou, I., Conklin, M. H., Fogel, M. L., Dick, R. P. and Ghezzehei, T. A. (2018). Hydraulic Redi-stribution by Native Sahelian Shrubs: Bioirrigation to Resist In-Season Drought. Front. Environ. Sci, 6: 98.

[26] Diedhiou, S., Dossa, E., Badiane, A., Diedhiou, I., Sene, M., Dick, R. (2009). Decomposition and spatial microbial heterogeneity associated with native shrubs in soils of agroecosystems in semi-arid Senegal. Int J. Pedobiologia, 52: 273-286.

[27] Hernandez, R. R., Debenport, S. J., Leewis, M.-C. C., Ndoye, F., Soumare, A., Thuita, M., Gueye, M., Miambi, E., Cha-puis-Lardy, L., Diedhiou, I. (2015). The native shrub, Piliostigma reticulatum, as an ecological “resource island” for mango trees in the Sahel. Int. J. Agric. Ecosys. Environ, 204: 51-61.

[28] Témé, B., Breman H, Sissoko K. (1996). Intensification agricole au Sahel: Mythe ou Réalité? Rapport de Synthèse des Travaux du Colloque International, Wageningen.

[29] Uphoff, N. (2013). Agroecological innovations: increasing food production with participatory development. Routledge. Earthscan Pulications Ltd, London.

[30] Kang, B. T., Caveness, F. E., Tian, G., Kolawole, G. O. (1999). Longterm alley cropping with four hedgerow species on an Alfisol in southwestern Nigeria effect on crop performance, soil chemical properties and nematode population. Int J. Nutr. Cycl. Agroecosyst, 54: 145-155.

[31] Kwesiga, F., Akinnifesi, F., Mafongoya, P. (2003). Agroforestry research and development in southern Africa during the 1990s: Review and challenges ahead. Agroforestry Systems, 59: 173-186.

[32] Beedy, T. L., Snapp, S. S., Akinnifesi, F. K., Sileshi, G. W. (2010). Impact of Gliricidia sepium Intercropping on soil organic matter fraction in a maize-based cropping system. Int. J. Agric. Ecosys. Environ, 138: 139-146. 

[33] Partey, S. T., Zougmoré, R. B., Ouédraogo, M., Campbell, B. M. (2018). Developing climate-smart agriculture to face climate variability in West Africa: Challenges and lessons learnt. Int. J. Cleaner Production, 187: 285-295. 

[34] IUSS, Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015. International soil classifi-cation system for naming soils and creating legends for soil maps, World Soil Resources Reports. FAO, Rome.

[35] Sacande, M., Sanogo, S., Beentje, H. (2016). Guide d'identification des arbres du Mali. Royal BotanicGardens, Kew.

[36] Agroscope. (1996-2018). Referenzmethoden der Eidgenössischen landwirtschaftlichen Forschungsanstalten. Bodenuntersuchung zur Düngeberatung; Zürich-Reckenholz.

[37] Hansen, B. (1989). Determination of Nitrogen as Elementary N, an Alternative to Kjeldahl. Int J. Acta Agriculturae Scandinavica, 39: 113-118.

[38] Kang, B. T. (1997). Alley cropping-soil productivity and nutrient recycling. Int. J. For. Ecol. Manage, 91: 75-82.

[39] Vanlauwe, B., Aihou, K., Tossah, B. K., Diels, J., Sanginga, N., Merckx, R. (2005). Senna siamea trees recycle Ca from a Ca-rich subsoil and increase the topsoil pH in agroforestry systems in the West African derived savanna zone. Int. J. Plant Soil, 269: 285-296.

[40] Cobbina, J., Ata-Krah, A. N., Meregini, A. O., Duguma, B. (1990). Productivity of some browse plants on soils of southeastern Nigeria. Tropical Grasslands, 24(1): 41-45.

[41] Young, A. (1989). Agroforestry for soil conservation (2e éd). British Library Cataloguing in Publication Data, Wallingford.

[42] Mapa, R. B., Gunasena, H. P. M. (1995). Effect of alley cropping on soil aggregate stability of a tropical Alfisol. Int. J. Agro-forest Syst, 32: 237-245. 

[43] Jabbar, M. A., Reynolds, L., Larbi A., Smith, J. (1997). Nutritional and economic benefits of Leucaena and Gliricidia as feed supplements for small ruminants in humid West Africa. Int. J. Tropical Animal Health and Production, 29: 35-47.

[44] Diouf, A., Diop, T., Fall-Ndiaye, M., Gueye, M. (2008). Impact de la biomasse de Gliricidia sepium utilisée comme engrais vert sur la culture du mais (Zea mays) au Sénégal. Int. J. Sciences, 8(3): 10-17.

[45] Sileshi, G., Akinnifesi, F. K., Ajayi, O. C., Place, F. (2008). Meta-analysis of maize yield response to woody and herbaceous legumes in sub-Saharan Africa. Int. J. Plant Soil, 307: 1-19.

[46] Smethurst, P. J., Huth, N. I., Masikati, P., Sileshi, G. W., Akinnifesi, F. K., Wilson, J., Sinclair, F. (2017). Accurate crop yield predictions from modelling tree-crop interactions in gliricidia-maize agroforestry. Int. J. Agric. Syst, 155: 70-77.

[47] Kuyah, S., Whitney, C., Jonsson, M., Sileshi, G. W., Öborn, I., Muthuri, C. W., Luedeling, E. (2019). Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis. Agron. Sustain Dev, 39: 47.

[48] Whittome, M. P. B., Spencer, D. S. C., Bayliss-Smith, T. (1995). IITA and ILCA on-farm alley farming research: Lessons for extension workers (éd.), Alley farming research and development.

[49] Adesina, A. A., Chianu, J. (2002). Determinants of farmers’ adoption and adaptation of alley farming technology in Nigeria. Int. J. Agroforest Syst, 55: 99-112.

[50] Luedeling, E., Smethurst, P. J., Baudron, F., Bayala, J., Huth, N. I., van Noordwijk, M., Ong, C. K., Mulia, R., Lusiana, B., Muthuri, C., Sinclair, F. L. (2016). Field-scale modeling of tree–crop interactions: Challenges and development needs. Int. J. Agric. Syst., 142: 51-69. 

[51] Banwart, S., Black, H., Cai, Z., Gicheru, P., Joosten, H., Victoria, R., Milne, E., Noellemeyer, E., Pascual, U., Nziguheba, G., Vargas, R., Bationo, A., Buschiazzo, D., de-Brogniez, D., Melillo, J., Richter, D., Termansen, M., van Noordwijk, M., Goverse, T., Ballabio, C., Bhattacharyya, T., Goldhaber, M., Nikolaidis, N., Zhao, Y., Funk, R., Duffy, C., Pan, G., la Scala, N., Gott-schalk, P., Batjes, N., Six, J., van Wesemael, B., Stocking, M., Bampa, F., Bernoux, M., Feller, C., Lemanceau, P., Montanarella, L. (2014). Benefits of soil carbon: report on the outcomes of an international scientific committee on problems of the environment rapid assessment workshop. Int. J. Carbon Management, 5(2): 185-192.

[52] Bernoux, M., Chevallier, T. (2014). Carbon in dryland soils Multiple essential functions. CSFD/Agropolis International, Montpellier.

[53] Havlicek, E., Mitchell, E. A. D. (2014). Soils Supporting Biodiversity. In: Dighton J, Krumins J. (eds) Interactions in Soil: Promoting Plant Growth. Biodiversity, Community and Ecosystems. Int. J. Springer, Dordrecht, 1: 27-58.

[54] Brady, M. V., Hedlund, K., Cong, R. G., Hemerik, L., Hotes, S., Machado, S., Mattsson, L., Schulz, E., Thomsen, I. K. (2015). Valuing Supporting Soil Ecosystem Services in Agriculture: A Natural Capital Approach. Int. J. Agron, 107: 1809-1821.

[55] Milne, E., Banwart, S. A., Noellemeyer, E., Abson, D. J., Ballabio, C., Bampa, F., Bationo, A., Batjes, N., Bernoux, M., Bhat-tacharyya, T., Black, H., Buschiazzo, D. E., Cai, Z., Cerri, C. E., Cheng, K., Compagnone, C., Conant, R., Coutinho, H. L. C., de Brogniez, D., Balieiro, F. d. C., Duffy, C., Feller, C., Fidalgo, E. C. C., da Silva, C. F., Funk, R., Gaudig, G., Gicheru, P. T., Goldhaber, M., Gottschalk, P., Goulet, F., Goverse, T., Grathwohl, P., Joosten, H., Kamoni, P. T., Kihara, J., Krawczynski, R., La Scala, N., Lemanceau, P., Li, L., Li, Z., Lugato, E., Maron, P-A., Martius, C., Melillo, J., Montanarella, L., Nikolaidis, N., Nziguheba, G., Pan, G., Pascua, l U., Paustian, K., Piñeiro, G., Powlson, D., Quiroga, A., Richter, D., Sigwalt, A.,. Six, J., Smith, J., Smith, P., Stocking, M., Tanneberger, F., Termansen, M., van Noordwijk, M., van Wesemael, B., Vargas, R., Victoria, R. L., Waswa, B., Werner, D., Wichmann, S., Wichtmann, W., Zhang, X., Zhao, Y., Zheng, J., Zheng, J. (2015). Soil carbon, multiple benefits. Int. J. Environmental Development, 13: 33-38.

[56] Baveye, P. C.,Baveye, J., Gowdy, J. (2016). Soil “Ecosystem” Services and Natural Capital: Critical Appraisal of Research on Uncertain Ground. Int. J. Front. Environ. Sci, 4(41).

[57] FAO. (2017). Soil Organic Carbon: the hidden potential, Food and Agriculture Organization of the United Nations, Rome.

[58] Van der Wal, A., de Boer, W. (2017). Dinner in the dark: Illuminating drivers of soil organic matter decomposition. Int J. Soil Biology and Biochemistry, 105: 45-48.

[59] Koch, A., McBratney, A., Adams, M., Field, D., Hill, R., Crawford, J., Minasny, B., Lal, R., Abbott, L., O'Donnell, A., Angers, D., Baldock, J., Barbier, E., Binkley, D., Parton, W., Wall, D. H., Bird, M., Bouma, J., Chenu, C., Flora, C. B., Goulding, K., Grunwald, S., Hempel, J., Jastrow, J., Lehmann, J., Lorenz, K., Morgan, C. L., Rice, C.W., Whitehead, D., Young, I., Zim-mermann, M. (2013). Soil Security: Int. J. Solving the Global Soil Crisis. Global Policy, 4: 434-441.

[60] McBratney, A., Field, D. J., Koch, A. (2014). The dimensions of soil security. Int. J. Geoderma., 213: 203-213.

[61] Vanlauwe, B., Bationo, A., Chianu, J., Giller, K. E., Merckx, R., Mokwunye, U., Ohiokpehai, O., Pypers, P., Tabo, R., Shepherd, K. D., Smaling, E. M. A., Woomer, P. L., Sanginga, N. (2010). Integrated soil fertility management—Operational definition and consequences for implementation and dissemination. Int. J. Agric, 39: 17-24.

[62] Vanlauwe, B., Kihara, J., Chivenge, P., Pypers, P., Coe, R., Six, J. (2011). Agronomic use efficiency of N fertilizer in ma-ize-based systems in sub-Saharan Africa within the context of integrated soil fertility management. Int. J. Plant Soil, 339: 35-50.

[63] Fairhurst, T. (2015). Manuel de Gestion Intégrée de la Fertilité des Sols. Consortium Africain pour la Santé des Sols, Nairobi.

[64] Adekiya, A. O. (2018). Legume Mulch Materials and Poultry Manure Affect Soil Properties, and Growth and Fruit Yield of Tomato. Int. J. Agriculturae Conspectus Scientificus, 83 (2): 161-167.

[65] Akintan, C. I. (2019). Agronomic Performance of Maize (Zea mays L.) as influenced by Leaf Pruning Quality in a Cut and Carry Agroforestry System in Akure, Ondo State, Nigeria. Int. J. KIU of Humanities, 194: 199-208.

[66] Abbadie, L., Lata, J., Tavernier, V. (2000). Impact des graminées pérennes sur une ressource rare: Dans la jachère en Afrique tropicale. John Libbey Eurotext.

[67] Blondel, D. (1971). Contribution à la connaissance de la dynamique de l'azote minéral en sol sableux (dior) au Sénégal. Int. J. L'Agronomie Tropicale, 26(12): 1303-1333.

[68] Duguma, B., Tonye, J., Kanmegne, J., Manga, T., Enoch, T. (1994). Growth of ten multipurpose tree species on acid soils in Sangmelima, Cameroon. Int. J. Agroforest Syst, 27: 107-119.

[69] Giller, K., Cadisch, G., Ehaliotis, C., Adams, E., Sakala, W. D., Mafongaya, P. L. (1997). Building soil nitrogen capital in Africa (éd.). American Society of Agronomy and Soil Science Society of America, Replenishing Soil Fertility in Afrika. Soil Science Society of America, USA.

[70] Mafongaya, P. L., Kuntashula, E., Kwesiga, F., Chriwa, T., Chintu, R., Sileshi, G., Matibini, J. (2003). Leguminous agroforestry options for replenishing soil fertility in Southern Africa. Grain Legumes and Green Manures for Soil Fertility in Southern Africa: Taking Stock of Progress (éd.). Soil Fert Net and CIMMYT, Harare.

Full-Text HTML

Alley Cropped Gliricidia sepium (Jacq.) Kunth ex. Walp. Enhance Soil Fertility and Yields of Cotton, Maize and Sorghum in Mali
How to cite this paper: Salif Doumbia, Sidiki Gabriel Dembele, Fagaye Sissoko, Odiaba Samake, Fernando Sousa, Cicek Harun, Noah Adamtey, Andreas Fliessbach. (2020) Alley Cropped Gliricidia sepium (Jacq.) Kunth ex. Walp. Enhance Soil Fertility and Yields of Cotton, Maize and Sorghum in Mali. International Journal of the Science of Food and Agriculture4(3), 301-313.

DOI: http://dx.doi.org/10.26855/ijfsa.2020.09.010

Volumes(Year) & Month

Free HPG Newsletters

Add your e-mail address to receive free newsletters from Hill Publishing Group.

Contact us

Hill Publishing Group

8825 53rd Ave

Elmhurst, NY 11373, USA

E-mail: contact@hillpublisher.com

Copyright © 2019 Hill Publishing Group Inc. All Rights Reserved.