Hill Publishing Group | contact@hillpublisher.com

Hill Publishing Group

Location:Home / Journals / Journal of Applied Mathematics and Computation /


Chaotic Features of the Forward Shift Map on the Generalized m-Symbol Space

Hena Rani Biswas1,*, Md. Shahidul Islam2

1Department of Mathematics, University of Barishal, Barishal-8200, Bangladesh.

2Department of Mathematics, University of Dhaka, Dhaka-1000, Bangladesh.

*Corresponding author: Hena Rani Biswas

PDF Downloads
Date: September 30,2020 Hits: 264, How to cite this paper


In this paper, we study some chaos related properties of the forward shift map on the generalized one-sided symbol space . We consider several notions of chaos available in the contemporary literature. In this paper, we prove that  is Devaney chaotic, Auslander-Yorke’s chaotic and generically δ-chaotic. We prove that  is exact Devaney chaotic and as a consequence is mixing Devaney Chaotic and weak mixing Devaney Chaotic. We also provide examples to show that the forward shift map  on  is topologically conjugate to the map on the space or equivalently conjugate to the map fm (x)=mx(mod 1) on the space R/Z. Finally, we give a counterexample to prove that not all topologically transitive maps are totally transitive. We also give an example of a continuous function that is topologically transitive but not chaotic.


[1] Douglas, A. L. and Marcus, B. (1995). An Introduction to Symbolic Dynamics and Coding. Cambridge University Press.

[2] Bhaumik, I. and Choudhury, B. S. (2010). A Note on the Genaralized Shift Map. General Mathematics Notes, 1, 154-160.

[3] Bhaumik, I. and Choudhury, B. S. (2010). Some Stronger Chaotic Features of the Genaralized Shift Map. Interna-tional Journal of Pure and Applied Sciences and Technology, 1(2), 79-86.

[4] Du, B. S. (1998). A dense orbit almost implies sensitivity to initial conditions. Bulletin of the Institute of Mathemat-ics Academia Sinica, 26,85-94.

[5] Biswas H. R. (2017). Investigation of chaoticity of the generalized shift map under a new definition of chaos and compare with shift map, Barisal University Journal Part 1, 4(2), 261-270.

[6] Ju H., Shao H., Choe Y., and Shi Y. (2016). Conditions for maps to be topologically conjugate or semi-conjugate to subshifts of finite type and criteria of chaos. Dynamical Systems, International Journal, 31(4). https: //doi.org/ 10.1080/14689367.2016.1158240.

[7] Biswas H. R. and Monirul M. Islam. (2020). Shift Map and Cantor Set of Logistic Function. IOSR Journal of Ma-thematics, 16(3), 01-08.

[8] Li, T. Y. and Yorke J. A. (1975). Period three implies chaos. The American Mathematical Monthly, 82(10), 985-992.

[9] Auslander, J. and Yorke, J. A. (1980). Interval maps factors of maps and chaos. Tohoku Mathematical Journal, 32, 177-188.

[10] Devaney, R. L. (1989). An introduction to chaotic dynamical systems. 2nd edition, New York: Addison-Wesley, Redwood City, CA.

[11] Banks, J., Brooks, J., Cairns, G., Davis, G., and Stacey, P. (1992). On Devaney’s definition of chaos. American Mathematical Monthly, 99, 332-334.

[12] Snoha, L. (1992). Dense chaos. Commentationes Mathematicae Universitatis Carolinae, 33, 747-752.

[13] Du, B. S. (2005). On the invariance of Li-Yoke chaos of interval maps. Journal of Difference Equations and Appli-cations, 11, 823-826.

[14] Parry, W. (1966). Symbolic dynamics and transformation of the unit interval. Transactions of the American Ma-thematical Society, 122(2), 368-378.

[15] Robinson, C. (1999). Dynamical System: Stability, Symbolic Dynamics and Chaos. Second Edition, CRC Press, Boca Raton, FL.

[16] Blanchard, F., Glasner, E., Kolyada, S., and Maass, A. (2000). On Li-Yorke pairs. J. Rei. Ange. Math, 547, 51-68.

[17] Ruette, S. (2003). Chaos for continuous interval maps, www.math.u- psud.fr/ruette/, December.

[18] Shao, H., Shi, Y., and Zhu, Y. (2018). Relationships among some chaotic properties of non-autonomous discrete dynamical systems, Journal of Difference Equations and Applications, https: // doi.org/ 10.1080/10236198.2018.1458101.

[19] Wang, X. and Huang, Y. (2013). Devancy chaos revisited. Topology and its Applications, (160), 455-460.

[20] Denker, M., C. Grillenberger, C., and Sigmund, K. (1976). Ergodic theory on compact metric spaces. Lecture Notes in Mathematics, 527, Springer-Verlag.

[21] Lu, T., Xhu, P., and Wu, X. (2013). The Retentivity of Chaos under Topological Conjugation. Mathematical Prob-lem in Engineering, Article ID 817831.https://doi.org/10.1155/2013/817831.

[22] Ramos, C. C. (2020). Kinematics in Biology: Symbolic Dynamics Approach, Mathematics. 8, 339. https://doi.org/10.3390/math8030339.

[23] Daniel, P. B. C., Carlos E. C. S., and Cecilio, P. (2016). A smooth chaotic map with parameterized shape and sym-metry. EURSIP Journal on Advances in Signal Processing.

[24] Kitchens, B. P. (1998). Symbolic Dynamics-one sided, Two sided and Countable State Markov Shifts. Universitext, Springer Verlag, Berlin.

Full-Text HTML

Chaotic Features of the Forward Shift Map on the Generalized  m-Symbol Space
How to cite this paper: M. G. Sobamowo. (2020) Chaotic Features of the Forward Shift Map on the Generalized m-Symbol Space. Journal of Applied Mathematics and Computation, 4(3), 104-112.
DOI: http://dx.doi.org/10.26855/jamc.2020.09.006

Volumes(Year) & Month

Free HPG Newsletters

Add your e-mail address to receive free newsletters from Hill Publishing Group.

Contact us

Hill Publishing Group

8825 53rd Ave

Elmhurst, NY 11373, USA

E-mail: contact@hillpublisher.com

Copyright © 2019 Hill Publishing Group Inc. All Rights Reserved.