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1. Introduction.

In 1992, Graham-Jenne-Mason-Sparling in [8], discovered a particularly conformally fourth order operator de.ned on
2k-dimensional smooth Riemannian manifolds. This operator named in short GIMS operator. Given (M", g) a smooth,
compact Riemannian manifold of dimension n > 3. Let k be a positive integer such that 2k < n and denote by Sy and

Ric, the scalar and Ricci curvature of g. Let ¢ € C**(M), the GIMS has a principle part (Ag)" u k€N More precisely,

k
for any riemannian metric g on M, the operator P s given by:

P;f :C®(M) — C=(M)

such that for » € ¢ (M)
ng(u) = (Ag)k u+ lot

Where 24 is the Laplace-Beltrami operator.
4

This operator is conformally invariant in the sense thatif 9 “= ¥"~*" 9 forall

ki oo JEEE T
Pi(pu) = p==% Py (u).

pEeC®(M), ¢ > 0.

k
Moreover, Fy is self-adjoint with respect to L2-scalar product. A scalar invariant is associated to this operator, namely
the “-curvature, denoted by @7 In the specific case 2k < n, this geometric quantity has been obtained when we take
p=1as
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2

Q= PF(1).
79 n— 2k g()

Pk

Observe that when (M", g) is Eistein, *¢ is of constant coefficients, explicitly:

i=k

k (n+2i—2).(n—2i)85,
Py (u) == H (Ag - dn(n—1) ) u

=1

The GJMS operator enjoys an interesting conformal properties that are very simular to ones of conformal Laplacian and

Paneitz-Branson operators. Recently, some remarkable developments have been achieved in the existence results of
prescribed @-curvature problem on Eisteinian manifolds, we refer the reader to [5], [6], [9] [11] and [12].

o

We denote by #i(M)is the standart Sobolev space, where for 1 < m <k, H.(M) which the completion of (/)
with respect to the norm:

l=m

2 ' L?
[l 72, (ary == Z /\1 AZu| du(g).
1=0 "

where
Mfue { A it 2 e
V AJu it m=20+1 isodd

¢ n of n
We denote by K(n, k) > 0 the best constant in the Sobolev’s continuous embedding "% (R") — L% (IR")

Jan (A%H)Q dx
Kn, k) = inf

b ‘ 3
ueD*:2(R™)—{0} (fR" ulzgh_ dl’) zi_
1)

Thanks to the series of results of Lions [17] and Swanson [19] that the extremal functions for the Sobolev inequality [18]
exist and are exactly multiples of the functions:

n—2k

A 2
Ua(x) = 3F i k
( ) n.k (J_ 4 )\2 |I’ - a|2)

QX o — nyii_kl (‘TZ + Ql) .

Where a € R", A >0,

Now, we use the following Sobolev inequalities proven in to [18].
Theorem 1 Let (M", g) be a smooth, compact Riemannian manifold of dimension n and let k be a positive integer such
that 2k < n: For any e > 0, thereis a constant A € R gych that

il:
Yue HF (M) - (f |u|2i dpt (g)) < (l—ﬁ—e]K(n.k}f
M M

Conceming the polyharmonic case, Pucci and Serrin in [8] have studied the following elliptic problem:

m 2
m Lo ) 2
Ag ul du(g)+Ae[ullgz_

. i_ .
{ (=AY u=u*?u+ru in Q

(£) 4| =0j=012. (1)
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when Q is the unit ball of R"™ and they proved that it admits nontrivial radial symmetric solution forall n > 8 that if
AeE(0,))

In [4], Benalili and Békiri have established the existence of nodal solutions of the following polyharmonic elliptic prob-
lem on a Riemannian manifold with boundary:
P¥(u) = f(z) \1(\2E¢_2 v in M,
( = j=0.1L2..(k—1).

where ¥1:-:¥k—1 are smooth functionsin 217,
Recently in [22], the author has been intrested by the existence of multiple solutions of the Q-curvature problem with
perturbation of the form:

P; (u) = f(x) \u|2§*‘_2 u+h In M,

Where /€ (M) with f > U and h belongs to a suitable Sobolev space.
Recently in [24], the author has shown that the following nonhomogenous Q-curvature problem with perturbation has at
least two solutions of the form:

P; (u) = f(x) |u|2§~‘_2 u+h in M,

: oo ( . - / 2 . .
Where f € C* () with />0 270 and 121l zr2000)" s sma enough and for every % = 3.
In this paper, We are concerned with the following problem. Let (M", g) be a smooth, compact Eistein Riemannian man-

ifold of dimension ™ = 3 and denote by Sy and Ricgythe scalar and Ricci curvature of g. We investigate the existence
and multiplicity of solutions for polyharmonic operators with critical exponent:

Py (w) = f(2) ‘“‘25‘72 u+ Ma(z) [ul? u.

2¢ ~
. d> g%~ =a,2<qg<N -
Where " € LYM) with 2-a and A > U areal parameter.

Throughout this section, we consider the energy functional /., for each * € H2(M),

, 1 , , A \ 1
Ty(u) = ;f P;(zf)wdmg)—gf () Jul* dyu(g)—
M M

& | f@) [l dulg)
Lp I M

Here, we assume that:

PF.C™(M) — C=(M)

(Hyp1) The operator is coercive i.e

3A > 0: (B (u)iu) > AllullGe Ve € H(M).

(Hyp2) The function f: M — R s positive C°-function on M.
(Hyp3) If the function h doesn’t vanishe almost everywhere on M.
(Hyp4) The parameter U < A < A1 such that

A% [max ((1+ €)K(n. k), A)] 2 1R

2. Some Preparatory Le mmas
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Before stating the proofs of our main results, we give some fruitful lemmas that help us in the following proofs:
Lemma 2 Assume that Fs @ €™ (M) — C=(M) s coercive. Then [#ler = L By (w)wdi(9)]* s 3 norm on

HE (M) equivalent to el a2 ),
Proof. ( See the proof in [19]).
ke
Now, we first give an example of manifolds where the GIMS operator Fy s coercive and it will be our working mani-
fold in the whole following analysis.
Lemma 3 Let (M", g) be a smooth Eistein Riemannian manifold of dimension 7 = 3 and denote by Sy its scalar curva-

D - k - - - - v -
ture. Let k be a positive integer such that 2% < 7_Then, 5 is coercive ifonly if ©g >0

Our working norm as follow, for all € H; (M):

|u| o = |:/ P;{u)u.d,u(g):|
¢ M

In this setion the main tool is the Mountain-Pass lemma of Ambrossetti-Rabinowitz :

1

2

Lemmad4 let 7 € C'(E.R) where (E.l-lz) isaBanach space. We assume that:
(i) J(0)=0.

(i) 3nR>0 suchthat J(«) >R>0 forall u€E suchthat I“lz="
(iii) Fv € E suchthat lim sups—yeoJ(tv) < 0.
Let

¢ = min max (J (n(t)))
nel tefo,1] '

where
T={nec ([0:1]; E): n(0)=0, n(1) =v}
Then there exists a sequene (U,), in E such that :
J(uy) — ¢ and VJ(u,) — 0 in E*

Moreover, we have that

c < sup J(tv)
>0

We see that » is a C* functional and its Fréehet derivative is given by:
(VJy (u),v) =

[ P¥(u).vdu(g) — Af h(z) [u|"? uvdp(g) — [ f() [u*? wvdp(g).
M M M

We shall prove that the functional Tx" verifies the Mountain-Pass geometry conditions, namely.
Lemma 5 Suppose either or that. Then I verifies the following conditions:

1. There exist constants 7= 2 > 0. sychthat Ja(u) = R >0, [ulpy =7,

. 2/ . pe =7 N
2. There exists ¥ € Ze(M) with Ve, " suchthat Ja(v) <0,
Proof.
1. We want to prove this lemma in two parts:
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Let © € HAM) gquenthat Yer =7> 0; then we have
1 A 1 i i
In(w) = < |ulpe — —f h(z) |ul® du(g) — W[ Flz) |ul* dulg)
2 ¢ 4 m 2, Jum

By Hdder and Sobolev inequalities, we deduce that

1 A
Ji(u) > B 29 - E(max((l +€e)K(n, k) )3 Rl ||ue ||H2(M
- (14 K (n, k), A E ‘
—g(ﬂl&}((‘ + E) \(?1. ‘)-‘ e)) I%an}(f )) “u”Hg(AM)

Hence if (Hyp1) is satisfied then, there exists a constant A > 0. such that :

1 A )
Ia(w) 2 5 |u|?3; — Ef\_%(ma}{((l +6)K,, A))F ||R)|2 Ju b

.
——‘\ ¥ (max((1 + =) K, ))2 max(f(x))|u

xeM IPk

2k
o Julpe =1
With g , We get
2 1 1'\_% - q _9
Jy(u) = r° x 5—)\ . (max (L +€)K(n, k), A))? ||k, ¢
2 i
A= 2
— (max ((1+€)K(n.k), A))? max(f(x))rzi_z
2?6 M

=r

Then there are - B > 0. suchthat forall € HE(M) ity [¢z we get Hl(u) = R>0

2.Let t>0 and € H{(M)— {0} hys
2 At f
Ta(tu) = 3 |u |prc —?f z) |ul? dulg) ] £ () [l dps(g)
of

Since 2<% < 2 we have that
J(tu) — —o0 ast — +oo

This proves lemma.
Applying the Mountain-Pass lemma, there exists a sequence (u,), in (M) such that:

J(up) — ¢y and VJ(u,) — 0 in (HZ(M))
Where

I'={necC" ([0:1: H{(M)): n(0)=0, n(1)=v}
and

= J
ey = r;glgtlél[g‘lx]( A ()
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Let
2

)
(

Q

v
;“ A (max (1 + ) K (n. k). A))~3 ||A] 2"
Qk —q

A

Then, we have the following lemmas.
Lemma 6 Let (M, g) is an n-dimensional compact, smooth and orientable Riemannian manifold with 7 =3 with we
suppose the conditions (h'), (h?) and (h®) are satisfying.

Then each Palais-Smale sequence at level €A isboundedin #3(M).
Proof.

Let (Uy)y @ sequence in Hi(M)such that :
J (Up) — ex and VJ (um) — 0 in (HZ(M))"

1 1 1 1 1
J(um)f()—ﬁ (VI () s ) = (2 — )ﬂ) HumHZf)\ (q — )ﬂ) fu h(z) |Jum|? dv(g)

=k

Then we have:

By Hdder and Sobolev inequalities, we get that

1 )
J () — 7 (VI () s ) = cx +0(1)

“k

“k

1 1 1 1
> (2 - )ﬁ) [ (q - 2,‘36) (max (1 +€)K(n. k), A))? |4, [

k .
By the coerciveness of the operator Fy , there exists a constant A > 0 such that :

exto(1) > [ 2= 2 ) fumlPon (2 = 2 ) A% (ma (1 + ) K (0, ), 42)% (1B [t |
2 2 g 2 - ‘ ®
we consider the following when ltnll = 1, then we have
of _ o of _ q
cy+o(l) > ( k‘) I . qskfg{'max((l +e)K(n. k). A))? |h|&) u‘;—§|
Z q {k

Hence if (Hyp2) is satisfied then we have

1

q
Cx

[ < +o(l)

2l _a gk _
A - /\ﬂﬁ;\—%(max (1+€e)K(n, k), A))? ||A|,,
““k “k

Thus, the sequence (Un)m is bounded in HE(M),

Theorem 7 Let (M", g) is an n-dimensional compact, smooth and orientable Riemannian manifold with ™ = 5. Let be
(Um)m a Palais-Smale sequence at level ©» and we suppose the conditions (Hyp1), (Hyp2) and (Hyp3) are satisfying.
Then there is a subsequence of (U, converging strongly in H (M),

Proof.

Let (Un)m be a (F-S)ex sequence. By using Lemma and from the reflexivity of #:(A/) and the compact imbedding
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theorem, we conclude that there exists a subsequence (Uy), and < H3 (M) sych that:
(1). Um — U weakly in Hi(M),

(). Um — U stronglyin L(M) for L<p<N=.2

— % __ 2n
@3). Vi, — Vu strongly in L) for L <9 <2 =725
(4). Ym — U aeinM.

Then we deduce that
)f a(@) |V (tm — w)]? dv(g)| < ||all, ||V (tm — u)||*2r. — 0 o2
r—1 - -
M strongly because © —1 n—2
y 2
| @) - mv(g)‘ < 18], l — e — 0 Loy
M i strongly since §— 1 n—4
and also
g q dg , 2n
h(2) tim — 0l d ()| < 18] lm — % — O oy
M @1 strongly since @ —1 n—4

After these preliminaries we can prove that Ym ‘= Um — U converges to 0 strongly in 3 (M)
Using Bre&zis-Lieb Lemma, we obtain

. 2 2
| Agu 1A ul|5 = [|[Ayv,|l5 +o(1)

2
m||2 -
and

f f(x |um\ — |u| dv ] F(@) [om]Y dv(g) + o(1)
and also

/ h(@) (|um|* — ul?) dv(g) = f h(z) [um|™ dv(g) + o(1)

M M
Taking account of vm — 0 weakly in #3(3) we have forall ¢ € L*(M)

[ L‘mAEC)dU(g) =o(1)
M
Then,
f uiiodl.'(g) +o(l) = / AgoAgudu(g) + o(1)
M M
Since Um — U weaklyin (M) je forall @€ (Hi(M))' we have
O (V) = 0 (um —u") = o(1)

we take in particular ¢ = £5(¢) for ¢ € Hi(M).

fu P,()vmdv(g) = of1)
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If we take ¥ = u, we obtain

[ (Bgtn gt = ()9 (Tt T) + b)) do(9) = ] +o(1)
and also if we put ¥ = Um,

fM (AgumAgu — a(@)g (Vim, Vi) + b(@)umte) do(g) = [|um]® + o(1)
and also
[ (Al it £(2) " ) ) = [+ o(0)
And by letting m — +oc
[M (Ml e+ £(2) ] ) do(g) — fM (Aful? + £() o) dotg)

Taking account of we obtain

Im) = () = 5 18y =037 [ 100 1 =l )+ o(1)

And taking account of %m — t — Oweakly in #3(M) we testby V/a(tm) = VIa(u)
(VI (up) — VI (1), — 1) = of1)
~ 185 (s =l = [ 7(&) lum =l () = o(1)

So
1A (1 — )2 = ff )t — ™ dv(g) +o(1)

We take account of (??), we obtain

1 1
TIy(tp) — Ty (u) = B ||Ag (U — u)||§ % HAQ (U — u)||§ +o0(1)

T () — Ja(u —||A (tm — u)||2

By Sobolev inequality, we have forall “ < H(M)

[

ir < (1+ 5)1{0] (Agu.)2 + |Vgu|2dv(g) + Agf u?dv(g)
M

M

We test the Sobolev inequality by Um — U we get

[t — || < (14 2)K, /M (A (tm — u))? dv(g) + o(1)
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So
fj ) |t | "du(g) < max f(x f|u —'u| dv(g)

M

Hence taking account of (2), we obtain

/ F(@) Jum — u|™ du(g) < (142)7= ma\f( )I\U" P A (u u)||;v+o(l)
Taking account of equality (2), one writes
1) > 2y (= )= (142) 7 ma £ () K2 [ Ay (1 — ) [ +0(1)
Then
1) > [|Ay (tm — w)|3—(142)7= max f( ) K (| Ay (1t — || 4-o(1)
Taking account that Il and RSt are equivalent there exists a constant A > 0 such that
o(1) > [|Ag (tm — w)|[3— (1 42)77 * max f(z 2V KT || Ay (1t — w)]|Y +o(1)
o(1) = [|Ag (tm — u)”i (1—(142)= géaé(f(x)ff% [|Ag (2 — u)|\;_2)+o(l)
Hence if
. N—2 l
limsup ||Ag (um —u)|l; = < i
m—+00 (1 + = )ﬂ TR maxgen f(2)
We get
2
—f (A (tm — ) dv(g) < c.
nJm
Since
2
e < = —
n K (maxgens f(x)) 7
Then
1
[ @yt ) dvta) <
M K (maxpen f(2z) T
Hence
1) 2 [[Ag(tm — w3 (1 = (1 + =) max f(2) K&~ T A — )| %) +ol(1)
=0
Or also

/ 2
[Ag(um — )5 = o1
i.e. Wm — U converges strongly in (),

3. Positivity and Multiplicity of Solutions
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We consider the following two functionals: for each € Hi(M):

T (w) =1/ P’“(u)u.d;l(g)fé]‘ h(x) (uﬂqd,u(g)fi_f flzx) (u+)2t’“ dulg)
2 ? 4 Jm 2
And
- 1 Py A ) \g o1 » L of )
J5 (u) :__/ P (u)u.d,u(g)——] h(z) (u ) du(g)—— flz) (u ) “dulg)
2/ ? 9 Jm 2, I

where

wT = max (u,0) and v~ = min (. 0)

Then, critical points of X and s are solutions to these equations respectively:

P; (u) = f(.r)'uzi_1 + Ah(z)u?! 2

and

ng (u) = (f(.l) ‘u_|2;“72 + Ah(x) |u_q2) T

©)
By applying the maximum principle k-times for the two previous equations and since Sg > U: we obtain u* and u” are
solutions of the equations [13] and [14] respectively.

4. Test Functions

The purpose of this section is to prove that the geometric conditions obtained in [1] are verified. Let (' v") e

normal coordinates centered at the point Yo where the function f attains its maximum. Let B (v:9) be the ball cen-
tered at Yo and of radius 0 with 0 <20 <d (d the injectivity radius). Denote by @& the volume element of

the (n - 1)-dimentional unit sphere 571 (1). We letalso 77 be a smooth function equals to 1 on B (%:9) and equals
to 0 on M- B (yo. 2(\1‘)
Put

n—2k
2

u(z) =& [ —— n(r)
r2 | €2

where
&= {( I pjcr—1 (n+ 2j)] T
' f(a)

We know from the work of [20], that

g

1
K (n,k)

r@)

I'(n)

v 3

=I_jcjer—1 (n+2j) (

where " denotes the Gamma function.
We compute now these quantities:
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¢= [ @) @ du )
and
Y —] Pk(uf) Aedp (g)

As in [6], we get

] f(l I“ % dp (Q N Ll ] PECTI
K (n. k)% [flyo)]

3AL (Yo) + f(Y0)Sg(Vo) o 2
(1 e fy e el

and
. 1
P, (ue) uedp (g) = =, nak X
M [K (. F)]7% [f (yo)] 2
(n? +4n — 20) Sy(yo) + 24(n — D)a(yo) | » 2
(l_( 6(n? —4)(n —6) e +ole) ).
We consider the path
u
A-’e (t) = :
||u€||2fc
It suffices to show that there exists € > U such that
k
sup Jy (7. (1)) < - =T
>0 n (K (n, k)2 [fy,)] =
where
I () == [Pm)um(%
(7 ( 2”%”; | o) uedulg
At
o [ Bl duto) - f 7 (@) el du(a)
¢ lluelly; Jas 2% el :
£ At 2
j/\ (.A-'e (1‘)) = ?1‘15 — ?Be — Q_uCE

k
Using the estimates above and we assume that

Af(yo) _ 2(k+4)n? —8(k+1)n — 24k
flve) ~ 3(n—2k)(n+2)(n—6)

Sg ( yo)

Then we get that
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o

sup Jy (7, (1)) < ,
20 n|K (n.k)|?

a—l;‘
|
b
=

[f(vo)] 5

Which achieves the proof completely.
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