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 Abstract 

Let (Mn, g) be a compact Eistein Riemannian manifold of dimension n and denote by 
Sg the scalar curvature of g. Let k be a positive integer. We prove that n > 2k and 
under some geometric conditions that the elliptic equation: 

 

has two distinct solutions: one positive and other negative.  

Keywords 

  

 

1. Introduction.  

In 1992, Graham-Jenne-Mason-Sparling in [8], discovered a particularly conformally fourth order operator de.ned on 

2k-dimensional smooth Riemannian manifolds. This operator named in short GJMS operator. Given (Mn
, g) a smooth, 

compact Riemannian manifold of dimension n   3. Let k be a positive integer such that 2k < n and denote by Sg and 

Ricg the scalar and Ricci curvature of g. Let , the GJMS has a principle part . More precisely, 

for any riemannian metric g on M, the operator  is given by: 

 

such that for  

 

Where : is the Laplace-Beltrami operator. 

This operator is conformally invariant in the sense that if , for all  : 

 

Moreover,  is self-adjoint with respect to L2-scalar product. A scalar invariant is associated to this operator, namely 

the -curvature, denoted by . In the specific case 2k < n, this geometric quantity has been obtained when we take 

 as 
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Observe that when (Mn
, g) is Eistein,  is of constant coefficients, explicitly: 

 
The GJMS operator enjoys an interesting conformal properties that are very simular to ones of conformal Laplacian and 

Paneitz-Branson operators. Recently, some remarkable developments have been achieved in the existence results of 

prescribed -curvature problem on Eisteinian manifolds, we refer the reader to [5], [6], [9] [11] and [12]. 

We denote by is the standart Sobolev space, where for 1   m   k,  which the completion of  

with respect to the norm: 

 
where 

 
 

We denote by K(n, k) > 0 the best constant in the Sobolev’s continuous embedding  

                          (1) 

Thanks to the series of results of Lions [17] and Swanson [19] that the extremal functions for the Sobolev inequality [18] 

exist and are exactly multiples of the functions: 

 

Where ,  

 
Now, we use the following Sobolev inequalities proven in to [18]. 

Theorem 1 Let (Mn, g) be a smooth, compact Riemannian manifold of dimension n and let k be a positive integer such 

that 2k < n: For any   > 0, there is a constant  such that 

 
Concerning the polyharmonic case, Pucci and Serrin in [8] have studied the following elliptic problem: 
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when   is the unit ball of  and they proved that it admits nontrivial radial symmetric solution for all n   8 that if 

.  

In [4], Benalili and Békiri have established the existence of nodal solutions of the following polyharmonic elliptic prob-

lem on a Riemannian manifold with boundary: 

 

where  are smooth functions in . 

Recently in [22], the author has been intrested by the existence of multiple solutions of the Q-curvature problem with 

perturbation of the form: 

 

Where  with  and h belongs to a suitable Sobolev space. 

Recently in [24], the author has shown that the following nonhomogenous Q-curvature problem with perturbation has at 

least two solutions of the form: 

 

Where  with ,  and  is small enough and for every . 

In this paper, We are concerned with the following problem. Let (Mn, g) be a smooth, compact Eistein Riemannian man-

ifold of dimension  and denote by Sg and Ricg the scalar and Ricci curvature of g. We investigate the existence 

and multiplicity of solutions for polyharmonic operators with critical exponent: 

 

Where , with  and  a real parameter. 

Throughout this section, we consider the energy functional , for each , 

 
Here, we assume that: 

(Hyp1) The operator  is coercive i.e 

 

(Hyp2) The function  is positive -function on M. 

(Hyp3) If the function h doesn’t vanishe almost everywhere on M. 

(Hyp4) The parameter  such that 

 

2. Some Preparatory Lemmas 
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Before stating the proofs of our main results, we give some fruitful lemmas that help us in the following proofs: 

Lemma 2 Assume that  is coercive. Then   is a norm on 

 equivalent to . 

Proof. ( See the proof in [19]). 

Now, we first give an example of manifolds where the GJMS operator  is coercive and it will be our working mani-

fold in the whole following analysis.  

Lemma 3 Let (Mn, g) be a smooth Eistein Riemannian manifold of dimension  and denote by Sg its scalar curva-

ture. Let k be a positive integer such that . Then,  is coercive if only if . 

Our working norm as follow, for all : 

 
In this setion the main tool is the Mountain-Pass lemma of Ambrossetti-Rabinowitz : 

Lemma 4 let  where  is a Banach space. We assume that: 

(i) . 

(ii)  such that  for all  such that . 

(iii)  such that  

Let 

 
where 

 
Then there exists a sequene (un)n in E such that : 

 
Moreover, we have that 

 

We see that  is a C1 functional and its Fréchet derivative is given by: 

 

 

We shall prove that the functional  verifies the Mountain-Pass geometry conditions, namely. 

Lemma 5 Suppose either or that. Then  verifies the following conditions: 

1. There exist constants  such that , .  

2. There exists  with , such that . 

Proof. 

1. We want to prove this lemma in two parts: 
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Let  such that ; then we have 

 
By Hölder and Sobolev inequalities, we deduce that 

 

 

Hence if (Hyp1) is satisfied then, there exists a constant , such that : 

 

With , we get 

 

Then there are  such that for all  with  we get . 

2. Let  and ; thus 

 

Since , we have that 

 
This proves lemma. 

Applying the Mountain-Pass lemma, there exists a sequence (un)n in  such that: 

 
Where 

 
and 
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Let 

 
Then, we have the following lemmas. 

Lemma 6 Let (M, g) is an n-dimensional compact, smooth and orientable Riemannian manifold with  with we 

suppose the conditions (h1), (h2) and (h3) are satisfying. 

Then each Palais-Smale sequence at level  is bounded in . 

Proof. 

Let (um)m a sequence in such that : 

 
Then we have: 

 
By Hölder and Sobolev inequalities, we get that 

 

 

By the coerciveness of the operator  , there exists a constant , such that : 

 

we consider the following when , then we have 

 
Hence if (Hyp2) is satisfied then we have 

 

Thus, the sequence (um)m is bounded in . 

Theorem 7 Let (Mn, g) is an n-dimensional compact, smooth and orientable Riemannian manifold with . Let be 

(um)m a Palais-Smale sequence at level  and we suppose the conditions (Hyp1), (Hyp2) and (Hyp3) are satisfying. 

Then there is a subsequence of (um)m converging strongly in . 

Proof. 

Let (um)m be a  sequence. By using Lemma and from the reflexivity of  and the compact imbedding 
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theorem, we conclude that there exists a subsequence (um)m and  such that: 

(1).  weakly in . 

(2).  strongly in  for . 

(3).   strongly in  for . 

(4).  a.e in M. 

Then we deduce that 

 strongly because  

and 

 strongly since  

and also 

 strongly since  

After these preliminaries we can prove that  converges to 0 strongly in . 

Using Brézis-Lieb Lemma, we obtain 

 
and 

 
and also 

 

Taking account of  weakly in , we have for all  

 
Then, 

 

Since weakly in  i.e. for all , we have 

 

we take in particular  for : 
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If we take , we obtain 

 

and also if we put , 

 
and also 

 

And by letting  

 
Taking account of we obtain 

 

And taking account of weakly in , we test by  

 
So 

 
 

We take account of (??), we obtain 

 
i.e. 

 

By Sobolev inequality, we have for all  

 

We test the Sobolev inequality by , we get 
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So 

 
Hence taking account of (2), we obtain 

 
Taking account of equality (2), one writes 

 
Then 

 

Taking account that  and  are equivalent, there exists a constant  such that 

 
Hence if 

 
We get 

 
Since 

 
Then 

 
Hence 

 
Or also 

 

i.e. converges strongly in . 

3. Positivity and Multiplicity of Solutions  
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We consider the following two functionals: for each : 

 
And 

 
where 

 

Then, critical points of  and  are solutions to these equations respectively: 

                              (2) 

and 

                         (3) 

By applying the maximum principle k-times for the two previous equations and since ; we obtain u+ and u- are 

solutions of the equations [13] and [14] respectively. 

4. Test Functions 

The purpose of this section is to prove that the geometric conditions obtained in [1] are verified. Let  be 

normal coordinates centered at the point  where the function f attains its maximum. Let  be the ball cen-

tered at  and of radius  with  (d the injectivity radius). Denote by  the volume element of 

the (n - 1)-dimentional unit sphere  (1). We let also  be a smooth function equals to 1 on  and equals 

to 0 on . 

Put 

 
where 

 
We know from the work of [20], that 

 
where Г denotes the Gamma function. 

We compute now these quantities: 
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and 

 
As in [6], we get 

 
and 

 
We consider the path 

 

It suffices to show that there exists  such that 

 
where 

 
Using the estimates above and we assume that 

 
Then we get that 
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Which achieves the proof completely. 
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