References
[1] Goel, Rati. (2021). Heart Disease Prediction Using Various Algorithms of Machine Learning (July 12, 2021). Proceedings of the International Conference on Innovative Computing & Communication (ICICC) 2021, Available at SSRN: https://ssrn.com/abstract=3884968 or http://dx.doi.org/10.2139/ssrn.3884968.
[2] Vaibhav Gupta. (2020). Dr. Pallavi Murghai Goel Computer Science and Engineering, “Heart Disease Prediction Using ML”, SSRG International Journal of Computer Science and Engineering (SSRG-IJCSE) – Volume 7 Issue 6 – June 2020.
[3] Chandra Reddy, N. S., Shue Nee, S., Zhi Min, L., and Xin Ying, C. (2019). Classification and Feature Selection Approaches by Machine Learning Techniques: Heart Disease Prediction. International Journal of Innovative Computing, 9(1). https://doi.org/10.11113/ijic.v9n1.210.
[4] Apurb Rajdhan, Avi Agarwal, Milan Sai, Dundigalla Ravi, Dr. Poonam Ghuli. (2020). “Heart Disease Prediction using Machine Learning”, International Journal of Engineering Research & Technology (IJERT), Volume 09, Issue 04 (April 2020).
[5] Nichenametla, R., Maneesha, T., Hafeez, S., Krishna, H. (2018). Prediction of Heart Disease Using Machine Learning Algorithms. International Journal of Engineering and Technology (UAE), 7, 363-366. 10.14419/ijet.v7i2.32.15714.
[6] Patel, J., Tejalupadhyay, S., Patel, S. (2016). Heart Disease prediction using Machine learning and Data Mining Technique. 10.090592/IJCSC.2016.018.
[7] Marappan, R. and Sethumadhavan, G. (2021). Solving Graph Coloring Problem Using Divide and Conquer-Based Turbulent Particle Swarm Optimization. Arab J Sci Eng., 2021. https://doi.org/10.1007/s13369-021-06323-x.
[8] Marappan, R. and Sethumadhavan, G. (2020). Complexity Analysis and Stochastic Convergence of Some Well-known Evolutionary Operators for Solving Graph Coloring Problem. Mathematics, 2020, 8, 303. https://doi.org/10.3390/math8030303.
[9] Marappan, R. and Sethumadhavan, G. (2018). Solution to Graph Coloring Using Genetic and Tabu Search Procedures. Arab J Sci Eng., 43, 525-542, (2018). https://doi.org/10.1007/s13369-017-2686-9.
[10] R. Marappan and G. Sethumadhavan. (2013). “A New Genetic Algorithm for Graph Coloring,” 2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation, 2013, pp. 49-54. doi: 10.1109/CIMSim.2013.17.
[11] G. Sethumadhavan and R. Marappan. (2013). “A genetic algorithm for graph coloring using single parent conflict gene crossover and mutation with conflict gene removal procedure,” 2013 IEEE International Conference on Computational Intelligence and Computing Research, 2013, pp. 1-6. doi: 10.1109/ICCIC.2013.6724190.
[12] Raja Marappan, S. Bhaskaran, N. Aakaash, S. Mathu Mitha. (2022). Analysis of COVID-19 Prediction Models: Design & Analysis of New Machine Learning Approach. Journal of Applied Mathematics and Computation, 6(1), 121-126. DOI: http://dx.doi.org/10.26855/jamc.2022.03.013.
[13] Raja Marappan, S. Bhaskaran, S. Ashwadh, H. Aathi Raj. (2022). Extraction of Drug Review Polarity Using Senti-mental Analysis. Journal of Applied Mathematics and Computation, 6(2), 167-177. DOI: http://dx.doi.org/10.26855/jamc.2022.06.001.
[14] Raja Marappan and S Bhaskaran. (2022). Datasets Finders and Best Public Datasets for Machine Learning and Data Science Applications. COJ Rob Artificial Intel. 2(1). COJRA. 000530. 2022.
[15] R. Marappan and G. Sethumadhavan. (2016). “Divide and conquer based genetic method for solving channel allo-cation,” 2016 International Conference on Information Communication and Embedded Systems (ICICES), 2016, pp. 1-5. doi: 10.1109/ICICES.2016.7518914.
[16] Marappan, R. (2022). Classification and Analysis of Recommender Systems. International Journal of Mathematical, Engineering, Biological and Applied Computing, 1(1), 17-21. DOI: 10.31586/ijmebac.2022.331.
[17] Marappan, R. and Bhaskaran, S. (2022). Analysis of Network Modeling for Real-world Recommender Systems. International Journal of Mathematical, Engineering, Biological and Applied Computing, 1(1), 1-7. DOI: 10.31586/ijmebac.2022.283.