References
Bhaskaran, S., Marappan, R., Santhi, B. (2020). Design and Comparative Analysis of New Personalized Recommender Algorithms with Specific Features for Large Scale Datasets. Mathematics, 2020, 8, 1106. https://doi.org/10.3390/math8071106.
Bhaskaran, S., Marappan, R., Santhi, B. (2021). Design and Analysis of a Cluster-Based Intelligent Hybrid Recommendation System for E-Learning Applications. Mathematics, 2021, 9, 197. https://doi.org/10.3390/math9020197.
Bi, X., Qu, A., Wang, J., Shen, Xiaotong. (2017). A group-specific recommender system. Journal of the American Statistical Association, 112 (519): 1344-1353. doi:10.1080/01621459.2016.1219261.
Cañamares, R., Castells, P., Moffat, A. (March 2020). “Offline Evaluation Options for Recommender Systems” (PDF). Information Retrieval. Springer, 23(4): 387-410. doi:10.1007/s10791-020-09371-3.
Francesco Ricci and Lior Rokach and Bracha Shapira. (2011). Introduction to Recommender Systems Handbook, Recommender Systems Handbook, Springer, 2011, pp. 1-35.
Marappan, R. and Bhaskaran, S. (2022). Movie Recommendation System Modeling Using Machine Learning. International Journal of Mathematical, Engineering, Biological and Applied Computing, 2022, 1(1), 12-16. DOI: 10.31586/ijmebac.2022.291.
Marappan, R. and Sethumadhavan, G. (2021). Solving Graph Coloring Problem Using Divide and Conquer-Based Turbulent Particle Swarm Optimization. Arab J SciEng, (2021). https://doi.org/10.1007/s13369-021-06323-x.
Marappan, R. and Sethumadhavan, G. (2018). Solution to Graph Coloring Using Genetic and Tabu Search Procedures. Arab J SciEng, 43, 525-542 (2018). https://doi.org/10.1007/s13369-017-2686-9.
Marappan, R. and Sethumadhavan, G. (2020). Complexity Analysis and Stochastic Convergence of Some Well-known Evolutionary Operators for Solving Graph Coloring Problem. Mathematics, 2020, 8, 303. https://doi.org/10.3390/math8030303.
Prem Melville and Vikas Sindhwani. (2010). Recommender Systems, Encyclopedia of Machine Learning, 2010.
Raja Marappan and S. Bhaskaran. (2022a). Analysis of Recent Trends in E-Learning Personalization Techniques. The Educational Review, USA, 6(5), 167-170. DOI: http://dx.doi.org/10.26855/er.2022.05.003.
Raja Marappan and S. Bhaskaran. (2022b). Datasets Finders and Best Public Datasets for Machine Learning and Data Science Applications. COJ Rob Artificial Intel., 2(1). COJRA. 000530. 2022.
Rubens, N., Elahi, M., Sugiyama, M., Kaplan, D. (2016). “Active Learning in Recommender Systems”. In Ricci, Francesco; Rokach, Lior; Shapira, Bracha (eds.). Recommender Systems Handbook (2 ed.). Springer US. doi:10.1007/978-1-4899-7637-6_24. ISBN 978-1-4899-7637-6.
Waila, P., Singh, V., and Singh, M. (26 April 2016). “A Scientometric Analysis of Research in Recommender Systems” (PDF). Journal of Scientometric Research, 5: 71-84. doi:10.5530/jscires.5.1.10.
Xin, X., Karatzoglou, A., Arapakis, I., and Jose, J. (2020). “Self-Supervised Reinforcement Learning for Recommender Systems”. arXiv:2006.05779.
Zou, Lixin, Xia, L.,Ding, Zhuoye, Song, Jiaxing, Liu, Weidong, Yin, Dawei. (2019). “Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems”. KDD '19: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. KDD '19: 2810–2818. arXiv:1902.05570. doi:10.1145/3292500.3330668. ISBN 9781450362016.