International Journal of Clinical and Experimental Medicine Research

ISSN Print: 2575-7989 Downloads: 113221 Total View: 1777164
Frequency: quarterly ISSN Online: 2575-7970 CODEN: IJCEMH
Email: ijcemr@hillpublisher.com
Article http://dx.doi.org/10.26855/ijcemr.2022.10.005

The Role of Matrix Metalloproteinases in the Pathogenesis of Atrial Fibrillation

Dan Li1, Junru Zhang2,*

1Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712046, China.

2Shaanxi Traditional Chinese Medicine Hospital, Xi'an, 710003, China.

*Corresponding author: Junru Zhang

Published: November 10,2022

Abstract

Atrial fibrillation is a disease of atrial dysfunction caused by absolutely irregular atrial activation, and it is one of the most common arrhythmias in clinic. At present, it is believed that the pathogenesis of atrial fibrillation is mainly due to the occurrence of fibrosis in atrial tissue, which affects the conduction between myocardium and ultimately leads to the occurrence of irregular atrial pacing. Matrix metalloproteinases (MMPs) are a kind of complex degradation enzymes related to human tissue fibrosis. They participate in the pathogenesis of atrial fibrillation and affect the prognosis by degrading the extracellular matrix proteins of myocardium. This article mainly discusses the relationship between MMPs and the pathogenesis of atrial fibrillation, and further clarifies the mechanism of the occurrence and development of atrial fibrillation, in order to provide new research ideas for the prevention and treatment of atrial fibrillation.

References

[1] Rahman F, Kwan GF, Benjamin EJ.  Global epidemiology of atrial fibrillation.  Nat Rev Cardiol. 2016 Jul 14;13(8):501. 

[2] Heijman J, Algalarrondo V, Voigt N, et al.  The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis.  Cardiovasc Res. 2016;109(4):467-479. 

[3] Zahid S, Cochet H, Boyle PM, et al.  Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc Res. 2016;110(3):443-454. 

[4] Cui N, Hu M, Khalil RA.  Biochemical and Biological Attributes of Matrix Metalloproteinases.  Prog Mol Biol Transl Sci. 2017;147:1-73. 

[5] Spinale FG, Villarreal F. Targeting matrix metalloproteinases in heart disease: lessons from endogenous inhibitors. Biochem Pharmacol. 2014;90(1):7-15. 

[6] Li G, Yang J, Zhang D, Wang X, Han J, Guo X. Research Progress of Myocardial Fibrosis and Atrial Fibrillation.  Front Cardiovasc Med. 2022;9:889706.  Published 2022 Jul 25. 

[7] Raffetto JD, Ross RL, Khalil RA.  Matrix metalloproteinase 2-induced venous dilation via hyperpolarization and activation of K+ channels: relevance to varicose vein formation.  J Vasc Surg. 2007;45(2):373-380. 

[8] Gao L, Zheng YJ, Gu SS, et al.  Degradation of cardiac myosin light chain kinase by matrix metalloproteinase-2 contributes to myocardial contractile dysfunction during ischemia/reperfusion.  J Mol Cell Cardiol. 2014;77:102-112. 

[9] Pellman J, Sheikh F. Atrial fibrillation: mechanisms, therapeutics, and future directions.  Compr Physiol. 2015;5(2):649-665. 

[10] Wachtell, K., et al.  Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: the Losartan Intervention For End Point Reduction in Hypertension (LIFE) study.  Journal of the American College of Cardiology, 2005.  45(5): p. 712-719. 

[11] Jia, M., et al.  Role of matrix metalloproteinase‑7 and apoptosis‑associated gene expression levels in the pathogenesis of atrial fibrosis in a Beagle dog model.  Mol Med Rep, 2017.16(5): p.6967-6973. 

[12] Polyakova V, Miyagawa S, Szalay Z, Risteli J, Kostin S. Atrial extracellular matrix remodelling in patients with atrial fibrillation.  J Cell Mol Med. 2008;  12(1):189-208. 

[13] Zhan, G., et al.  Potential roles of circulating matrix metalloproteinase-28 (MMP-28) in patients with atrial fibrillation.  Life Sciences, 2018. 204: p.15-19. 

[14] Moe, G. W., et al.  Matrix Metalloproteinase Inhibition Attenuates Atrial Remodeling and Vulnerability to Atrial Fibrillation in a Canine Model of Heart Failure.  Journal of Cardiac Failure, 2008.  14(9):p.768-776. 

[15] Gai X, Zhang Z, Liang Y, et al.  MMP-2 and TIMP-2 gene polymorphisms and susceptibility to atrial fibrillation in Chinese Han patients with hypertensive heart disease.  Clin Chim Acta. 2010;  411(9-10):719-724. 

[16] Foronjy, R.F., et al.  Transgenic Expression of Matrix Metalloproteinase-1 Inhibits Myocardial Fibrosis and Prevents the Tran-sition to Heart Failure in a Pressure Overload Mouse Model.  Hypertension Research, 2008.  31(4):p.725-735. 

[17] Gould PA, Yii M, McLean C, et al.  Evidence for increased atrial sympathetic innervation in persistent human atrial fibrillation.  Pacing Clin Electrophysiol. 2006;  29(8):821-829. 

[18] Tan AY, Zhou S, Ogawa M, et al.  Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines.  Circulation. 2008;  118(9):916-925. 

[19] Kneller J, Zou R, Vigmond EJ, Wang Z, Leon LJ, Nattel S. Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties.  Circ Res. 2002;90(9):E73-E87. 

[20] Lee JK, Shin JH, Suh J, Choi IS, Ryu KS, Gwag BJ.  Tissue inhibitor of metalloproteinases-3 (TIMP-3) expression is increased during serum deprivation-induced neuronal apoptosis in vitro and in the G93A mouse model of amyotrophic lateral sclerosis: a potential modulator of Fas-mediated apoptosis.  Neurobiol Dis. 2008;30(2):174-185. 

[21] Łukaszewicz-Zając M, Mroczko B, Słowik A. Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in amyotrophic lateral sclerosis (ALS).  J Neural Transm (Vienna).  2014;  121(11):1387-1397. 

[22] Waldron, Ashley L et al. “Oxidative stress-dependent MMP-13 activity underlies glucose neurotoxicity.”  Journal of diabetes and its complications, vol. 32, 3 (2018): 249-257.

[23] Staff, Nathan P, et al. “Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems.” Experimental neurology, vol. 324 (2020): 113121.

[24] Ferroni, Patrizia et al. “Serum metalloproteinase 9 levels in patients with coronary artery disease: a novel marker of inflammation.” Journal of investigative medicine: the official publication of the American Federation for Clinical Research vol. 51, 5 (2003): 295-300.

[25] Fiorentino, Loredana, et al. “Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay.” EMBO molecular medicine, vol. 5, 3 (2013): 441-55. 

[26] Elia C, et al. “Alcohol modulation of cardiac matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs favors collagen accumulation.” Alcoholism, clinical and experimental research, vol. 38, 2 (2014): 448-56. doi:10.1111/acer.12239.

[27] Uemura, S, et al. “Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress.” Circulation research, vol. 88, 12 (2001): 1291-8. 

[28] Papathanasiou, Konstantinos A, et al. “Molecular Insights in Atrial Fibrillation Pathogenesis and Therapeutics: A Narrative Review.” Diagnostics (Basel, Switzerland) vol. 11, 9 1584. 31 Aug. 2021.

[29] Polyakova, V., et al. Atrial extracellular matrix remodelling in patients with atrial fibrillation. Journal of cellular and molecular medicine, 2008. 12(1): p. 189-208.

[30] Kornej, J., et al. Addition of TGF-β1 to existing clinical risk scores does not improve prediction for arrhythmia recurrences after catheter ablation of atrial fibrillation. International Journal of Cardiology, 2016. 221: p. 52-54.

How to cite this paper

The Role of Matrix Metalloproteinases in the Pathogenesis of Atrial Fibrillation

How to cite this paper: Dan Li, Junru Zhang. (2022) The Role of Matrix Metalloproteinases in the Pathogenesis of Atrial Fibrillation. International Journal of Clinical and Experimental Medicine Research6(4), 357-361.

DOI: http://dx.doi.org/10.26855/ijcemr.2022.10.005