References
[1] World Health Organization, “Coronavirus Disease 2019 (COVID-19), Situation Report -51, Data as reported by 11 March 2020”. https://www.who.int/emergencies/disease/ novel-coronavirus-2019/situation-reports.
[2] Tang, B., Bragazzi, N. L., Li, Q., Tang, S., Xiao, Y., and Wu, J. (2020). An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infectious Disease Modelling, 5, 248–255. https://doi.org/10.1016/j.idm.2020.02.001.
[3] He, S., Tang, S. Y., and Rong, L. (2020). A discrete stochastic model of the COVID-19 outbreak: Forecast and control. Mathematical biosciences and engineering: MBE, 17(4), 2792–2804. https://doi.org/10.3934/mbe.2020153.
[4] World Health Organization. “Coronavirus Disease 2019 (COVID-19), Situation Report -25”. https://www.who.int/ emergen-cies/disease/novel-coronavirus-2019/situation-reports.
[5] Lu H. (2020). Drug treatment options for the 2019-new coronavirus (2019-nCoV). Bioscience trends, 14(1), 69–71.
https://doi.org/10.5582/bst.2020.01020.
[6] Madubueze, C.E., Kimbir, A.R. and Aboiyar, T. (2018). Global Stability of Ebola Virus Disease Model with Contact Tracing and Qu-arantine..Applications & Applied Mathematics, 13(1), 382–403.
[7] Hassan, M. N., Mahmud, M. S., Nipa, K. F., and Kamrujjaman, M. (2021). Mathematical Modeling and COVID-19 Forecast in Texas, USA: A Prediction Model Analysis and the Probability of Disease Outbreak. Disaster medicine and public health preparedness, 1–12. Advance online publication. https://doi.org/10.1017/dmp.2021.151.
[8] Omame, A., Rwezaura, H., Diagne, M. L., Inyama, S. C., and Tchuenche, J. M. (2021). COVID-19 and dengue co-infection in Brazil: optimal control and cost-effectiveness analysis. European physical journal plus, 136(10), 1090.
https://doi.org/10.1140/epjp/s13360-021-02030-6.
[9] Abidemi, A., Zainuddin, Z. M., and Aziz, N. A. B. (2021). Impact of control interventions on COVID-19 population dynamics in Malaysia: a mathematical study. European physical journal plus, 136(2), 237.https://doi.org/10.1140/epjp/s13360-021-01205-5.
[10] Madubueze, C. E., Dachollom, S., and Onwubuya, I. O. (2020). Controlling the Spread of COVID-19: Optimal Control Analysis. Computational and mathematical methods in medicine, 2020, 6862516. https://doi.org/10.1155/2020/6862516.
[11] Zamir, M., Abdeljawad T., Nadeem F., Wahid A. and Yousef, A. (2021). An optimal control analysis of a COVID-19 model. Alexandria Engineering Journal, 60(3), 2875-2884. doi:10.1016/j.aej.2021.01.022.
[12] Song, H., Wang, R., Liu, S., Jin, Z., and He, D. (2022). Global stability and optimal control for a COVID-19 model with vaccination and isolation delays. Results in physics, 42, 106011. https://doi.org/10.1016/j.rinp.2022.106011.
[13] Kamrujjaman, M., Mahmud, M. S., and Islam, M. S. (2020). Coronavirus Outbreak and the Mathematical Growth Map of COVID-19. Annual Research & Review in Biology, 35(1), 72-78. https://doi.org/10.9734/arrb/2020/v35i130182.
[14] Olaniyi, S., Obabiyi, O. S., Okosun, K. O., Oladipo, A. T., and Adewale, S. O. (2020). Mathematical modelling and optimal cost-effective control of COVID-19 transmission dynamics. European physical journal plus, 135(11), 938.
https://doi.org/10.1140/epjp/s13360-020-00954-z.
[15] Khan, M. A., Ullah, S., and Kumar, S. (2021). A robust study on 2019-nCOV outbreaks through non-singular derivative. European physical journal plus, 136(2), 168. https://doi.org/10.1140/epjp/s13360-021-01159-8.
[16] Aba Oud, M. A., Ali, A., Alrabaiah, H., Ullah, S., Khan, M. A., and Islam, S. (2021). A fractional order mathematical model for COVID-19 dynamics with quarantine, isolation, and environmental viral load. Advances in difference equations, 2021(1), 106. https://doi.org/10.1186/s13662-021-03265-4.
[17] Tsay, C., Lejarza, F., Stadtherr, M. A., and Baldea, M. (2020). Modeling, state estimation, and optimal control for the US COVID-19 outbreak. Scientific reports, 10(1), 10711. https://doi.org/10.1038/s41598-020-67459-8.
[18] Abidemi, A., Zainuddin, Z. M., and Aziz, N. A. B. (2021). Impact of control interventions on COVID-19 population dynamics in Malaysia: a mathematical study. European physical journal plus, 136(2), 237. https://doi.org/10.1140/epjp/s13360-021-01205-5.
[19] Ullah, S., and Khan, M. A. (2020). Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study. Chaos, solitons, and fractals, 139, 110075. https://doi.org/10.1016/j.chaos.2020.110075.
[20] Mwalili, S., Kimathi, M., Ojiambo, V., Gathungu, D., and Mbogo, R. (2020). SEIR model for COVID-19 dynamics incorporating the environment and social distancing. BMC research notes, 13(1), 352. https://doi.org/10.1186/s13104-020-05192-1.
[21] Kamrujjaman, M., Saha, P., Islam, M.S. and Ghosh, U. (2022). Dynamics of SEIR Model: A case study of COVID-19 in Italy. Results in Control and Optimization, 7, 100119. https://doi.org/10.1016/j.rico.2022.100119.
[22] Mahmud, M. S., Kamrujjaman, M., Adan, M. M. Y., Hossain, M. A., Rahman, M. M., Islam, M. S., Mohebujjaman, M., and Molla, M. M. (2022). Vaccine efficacy and SARS-CoV-2 control in California and U.S. during the session 2020-2026: A modeling study. Infec-tious Disease Modelling, 7(1), 62–81. https://doi.org/10.1016/j.idm.2021.11.002.
[23] Avila-Ponce de León, U., Pérez, Á. G. C., and Avila-Vales, E. (2020). An SEIARD epidemic model for COVID-19 in Mexico: Ma-thematical analysis and state-level forecast. Chaos, solitons, and fractals, 140, 110165. https://doi.org/10.1016/j.chaos.2020.110165.
[24] Chitnis, N., Hyman, J. M., and Cushing, J. M. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of mathematical biology, 70(5), 1272–1296. https://doi.org/10.1007/s11538-008-9299-0.
[25] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelize, R.V. and Mishchenko, E.F. (1962). The Mathematical Theory of Optimal Processes. John Wiley & Sons, New York.
[26] Fleming, W.H. and Rishel, R.W. (1975). Deterministic and Stochastic Optimal Control. Springer, Berlin.
[27] Lakshmikantham, V., Leela, S., and Martynyuk, A.A. (1989). Stability Analysis of Nonlinear Systems. Marcel Dekker Inc., New York.
[28] Imran, M., Malik, T., Ansari, A. R., and Khan, A. (2016). Mathematical analysis of swine influenza epidemic model with optimal control. Japan journal of industrial and applied mathematics, 33(1), 269–296. https://doi.org/10.1007/s13160-016-0210-3.
[29] Hethcote, H.W. (2000). The mathematics of infectious diseases. SIAM Rev., 42(4), 599–653.
https://doi.org/10.1137/S0036144500371907.
[30] Islam, MS, Ira, JI, Kabir, KMA, Kamrujjaman, M. (2020). Effect of lockdown and isolation to suppress the COVID-19 in Bangladesh: an epidemic compartments model, Journal of Applied Mathematics and Computation, 4 (3), 83-93.
[31] Kamrujjaman, M., Mahmud, MS et al. (2021). SARS-CoV-2 and Rohingya refugee camp, Bangladesh: uncertainty and how the government took over the situation. Biology, 10 (2), 124.