References
[1] N. Khan et al., “Big Data: Survey, Technologies, Opportunities, and Challenges,” Sci. World J., vol. 2014, p. 712826, 2014, doi: 10.1155/2014/712826.
[2] S. Bi, R. Zhang, Z. Ding, and S. Cui, “Wireless communications in the era of big data,” IEEE Commun. Mag., vol. 53, no. 10, pp. 190–199, 2015, doi: 10.1109/MCOM.2015.7295483.
[3] M. Ballings, D. Van den Poel, and M. Bogaert, “Social media optimization: Identifying an optimal strategy for increasing network size on Facebook,” Omega (United Kingdom), vol. 59, pp. 15–25, 2016,
doi: 10.1016/j.omega.2015.04.017.
[4] D. G. Costa, C. Duran-Faundez, D. C. Andrade, J. B. Rocha-Junior, and J. P. J. Peixoto, “TwitterSensing: An event-based approach for wireless sensor networks optimization exploiting social media in smart city applications,” Sensors (Switzerland), vol. 18, no. 4, 2018, doi: 10.3390/s18041080.
[5] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” vol. 349, no. 6245, 2015.
[6] W. Qi, R. Procter, J. Zhang, and W. Guo, “Mapping consumer sentiment toward wireless services using geospatial twitter data,” IEEE Access, vol. 7, pp. 113726–113739, 2019, doi: 10.1109/ACCESS.2019.2935200.
[7] Y. Liu, S. Bi, Z. Shi, and L. Hanzo, “When Machine Learning Meets Big Data: A Wireless Communication Perspective,” IEEE Veh. Technol. Mag., vol. 15, no. 1, pp. 63–72, 2020, doi: 10.1109/MVT.2019.2953857.
[8] Y. Ren, “Python Machine Learning : Machine Learning and Deep Learning With Python ,” Int. J. Knowledge-Based Organ., vol. 11, no. 1, pp. 67–70, 2021.
[9] N. A. Ghani, S. Hamid, I. A. Targio Hashem, and E. Ahmed, “Social media big data analytics: A survey,” Comput. Human Behav., vol. 101, no. December 2017, pp. 417–428, 2019, doi: 10.1016/j.chb.2018.08.039.
[10] B. Yang, W. Guo, B. Chen, G. Yang, and J. Zhang, “Estimating Mobile Traffic Demand Using Twitter,” IEEE Wirel. Commun. Lett., vol. 5, no. 4, pp. 380–383, 2016, doi: 10.1109/LWC.2016.2561924.
[11] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of Machine Learning in Wireless Networks: Key Techniques and Open Issues,” IEEE Commun. Surv. Tutorials, vol. 21, no. 4, pp. 302–3108, 2019, doi: 10.1109/COMST.2019.2924243.
[12] J. Yu, H. Huang, and S. Tian, “Cluster validity and stability of clustering algorithms,” Lect. Notes Comput. Sci. (in-cluding Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 3138, no. 3, pp. 957–965, 2004,
doi: 10.1007/978-3-540-27868-9_105.
[13] D. Xu and Y. Tian, “A Comprehensive Survey of Clustering Algorithms,” Ann. Data Sci., vol. 2, no. 2, pp. 165–193, 2015, doi: 10.1007/s40745-015-0040-1.
[14] T. Ali, S. Asghar, and N. A. Sajid, “Critical analysis of DBSCAN variations,” 2010 Int. Conf. Inf. Emerg. Technol. ICIET 2010, 2010, doi: 10.1109/ICIET.2010.5625720.
[15] N. Shi, X. Liu, and Y. Guan, “Research on k-means clustering algorithm: An improved k-means clustering algo-rithm,” 3rd Int. Symp. Intell. Inf. Technol. Secur. Informatics, IITSI 2010, pp. 63–67, 2010,
doi: 10.1109/IITSI.2010.74.
[16] C. Zhang and S. Xia, “K-means clustering algorithm with improved initial center,” Proc. - 2009 2nd Int. Work. Knowl. Discov. Data Mining, WKKD 2009, vol. 1, no. 2, pp. 790–792, 2009, doi: 10.1109/WKDD.2009.210.
[17] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,” Pattern Recognit., vol. 36, no. 2, pp. 451–461, 2003, doi: 10.1016/S0031-3203(02)00060-2.
[18] J. Guo, Y. Li, M. Hou, S. Han, and J. Ren, “Recognition of daily activities of two residents in a smart home based on time clustering,” Sensors (Switzerland), vol. 20, no. 5, pp. 1–15, 2020, doi: 10.3390/s20051457.
[19] S. Fong, S. U. Rehman, K. Aziz, and I. Science, “DBSCAN : Past, Present and Future,” pp. 232–238, 2014.
[20] M. Daszykowski and B. Walczak, “Density-Based Clustering Methods,” Compr. Chemom., vol. 2, pp. 635–654, 2009, doi: 10.1016/B978-044452701-1.00067-3.
[21] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, no. C, pp. 53–65, 1987, doi: 10.1016/0377-0427(87)90125-7.