References
[1] Miller, V.S. (1986). Use of elliptic curves in cryptography. Proc. of Crypto 85, LNCS 218, Springer, 417-426.
[2] Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation, 48, 203-209.
[3] FIPS PUB 186-2, Digital signature standard (DSS). National Institute of Standards and Technology, Jan. 2000.
[4] Bartee, T.C., Schneider, D. J. (1963). Computation with finite fields. Information and Computing, 6, 79-98.
[5] Mastrovito, E.D. (1988). VLSI architectures for multiplication over finite field GF(2m). Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, Proc. Sixth Int’l Conf., AAECC-6, T. Mora, ed., Rome, 297-309.
[6] Itoh, T., Tsujii, S. (1989). Structure of parallel multipliers for a class of fields GF(2m). Information and Computation, 83, 21-40.
[7] Huang, W.-T., Chang, C. H., Chiou, C. W., Tan, S.-Y. (2011). Non-XOR approach for low-cost bit-parallel polynomial basis multiplier over GF(2m). IET Information Security, 5(3), 152-162.
[8] Fan, H., Hasan, M.A. (2007). A new approach to subquadratic space complexity parallel multipliers for extended binary fields. IEEE Trans. Computers, 56(2), 224-233.
[9] Berlekamp, E.R. (1982). Bit-serial reed-solomon encoder. IEEE Trans. Inf. Theory, IT-28, 869-874.
[10] Wu, H., Hasan, M. A., Blake, I. F. (1998). New low-complexity bit-parallel finite field multipliers using weakly dual bases. IEEE Trans. Computers, 47(11), 1223-1234.
[11] Chiou, C.W., Lee, C.-Y., Lin, J.-M., Yeh, Y.-C., Pan, J.-S. (2017). Low-Latency Digit-Serial Dual Basis Multiplier for Lightweight Cryptosystems. IET Information Security, 11(6), 301-311.
[12] Massey, J. L., Omura, J. K. (1986). Computational method and apparatus for finite field arithmetic. U.S. Patent Number 4,587,627.
[13] Reyhani-Masoleh, A. (2006). Efficient algorithms and architectures for field multiplication using Gaussian normal bases. IEEE Trans. Computers, 55(1), 34-47.
[14] Kwon, S. (2003). A low complexity and a low latency bit parallel systolic multiplier over GF(2m) using an optimal normal basis of type II. Proc. of the 16th IEEE Symposium on Computer Arithmetic, Santiago de Compostela, Spain, 196-202.
[15] Lee, C.-Y., Chiou, C. W. (2012). Scalable Gaussian normal basis multipliers over GF(2m) using Hankel matrix-vector represen-tation. Journal of Signal Processing Systems for Signal Image and Video Technology, 69(2), 197-211.
[16] Chiou, C. W., Sun, Y.-S., Lee, C.-M., Lin, J.-M., Chuang, T.-P., Lee, C.-Y. (2017). Gaussian Normal Basis Multiplier over GF(2m) Using Hybrid Subquadratic and Quadratic TMVP Approach for Elliptic Curve Cryptography. IET Circuits, Devices & Systems, 11(6), 579-588.
[17] Fan, H., Hasan, M.A. (2007). Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases. IEEE Trans. Computers, 56(10), 1435-1437.
[18] Park, S.-M., Hong, D., Seo, C. (2013). Subquadratic space complexity multiplier for GF(2n) using type 4 Gaussian normal bases. ETRI Journal, 35(3), 523-529.
[19] Yang, C.-S., Pan, J.-S., Lee, C.-Y. (2013). Digit-serial GNB multiplier based on TMVP approach over GF(2m). Proc. of 2013 Second International Conference on Robot, Vision and Signal Processing, Kitakyushu, Japan, 123-128.
[20] Dickson, L.E. (1883). The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group. Annals of Mathematics, 11(1/6), 161-183.
[21] Mullin, R.C., Mahalanobis, A. (2007). Dickson bases and finite fields. Technical report, University of Waterloo, Canada.
[22] Hasan, M.A., Negre, C. (2008). Subquadratic space complexity multiplication over binary fields with Dickson polynomial representation. Proc. Second Int’l Workshop Arithmetic of Finite Fields, LNCS 5130, 88-102.
[23] Hasan, M.A., Negre, C. (2011). Low space complexity multiplication over binary fields with Dickson polynomial representation. IEEE Trans. on Computers, 60(4), 602-607.
[24] Hasan, M.A. (1998). Double-basis multiplicative inversion over GF(2m). IEEE Trans. on Computers, 47(9), 960-970.
[25] Pan, J.-S., Azarderakhsh, R., Kermani, M. M., Lee, C.-Y., Lee, W.-Y., Chiou, C.W., Lin, J.-M. (2014). Low-latency digit-serial systolic double basis multiplier over GF(2m) using subquadratic Toeplitz matrix-vector product approach. IEEE Trans. Computers, 63(5), 1169-1181.
[26] Lild, R., Mullen, G. L., Turnwald, G. (1993). Dickson polynomials. Pitman Monograph and Survey in Pure and Applied Mathematics, Longman, London.
[27] Gao, S., Mullen, G. L. (1994). Dickson polynomials and irreducible polynomials over finite fields. Journal of Number Theory, 49, 118-132
[28] NanGate Standard Cell Library [Online]. Available: http://www.si2.org/openeda.si2.org/projects/nangatelib/.