References
[1] Antonopoulos CG, Cooper I, Mondal A: A SIR model assumption for the spread of COVID-19 in different communities, Chaos Solitons Fractals, Vol.139(2020).
[2] Sun K, He S, Peng Y: SEIR modeling of the COVID-19 and its dynamics, Nonlinear Dyn, Vol.101(2020), No.3, p.1667–80.
[3] Yang CY, Wang J: A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math Biosci Eng, Vol.17(2020), No.3, p. 2708–2724.
[4] Yuan Y, Li N: Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness, Physica A,Vol.603(2022).
[5] Area I, Batarfi H, Losada J, Nieto J, Shammakh W, Torres-Iglesias A:On a fractional order ebola epidemic model, Adv Differ Equ, (2015)No.278.
[6] Almeida R., Brito da Cruz, A.M.C., Martins N., Monteiro M: An epidemiological MSEIR model described by the caputo fractional derivative, Int J Dynam Control, Vol.7(2019), p. 776–784.
[7] D. Baleanu, M. Hassan Abadi, A. Jajarmi, K. Zarghami Vahid, J.J. Nieto: A new comparative study on the general fractional model of COVID-19 with isolation and quarantine effects, Alex Eng J, Vol.61(2022)No.6, p.4779–4791.
[8] Luchko Y.,Yamamoto M: General time-fractional diffusion equation: Some uniqueness and existence results for the initial-boundary-value problems, FCAA, Vol.19(2016), p. 676–695.
[9] Alkahtani Badr: A fractional-order investigation of vaccinated SARS-CoV-2 epidemic model with caputo fractional derivative, J Funct Space, Vol.2022(2022), p. 1–11.
[10] Mansour A. Abdulwasaa, Mohammed S. Abdo, Kamal Shah, Taher A. Nofal, Satish K. Panchal, Sunil V. Kawale, Abdel-Haleem Abdel-Aty: Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in india, Results Phys, Vol.20(2021).
[11] Deressa C.T., Duressa G.F: Analysis of atangana–baleanu fractional-order SEAIR epidemic model with optimal control, Adv Differ Equ,Vol.2021(2021)No.174.
[12] Vijayalakshmi G.M, Roselyn Besi. P: Vaccination control measures of an epidemic model with long-term memristive effect, J Comput ApplMath, Vol.419(2022), p. 114738–114738.
[13] Adomian G: A review of the decomposition method and some recent results for nonlinear equations, Computers Math Applic, Vol.21(1991)No.5, p. 101–127.
[14] Khuri S A: A laplace decomposition algorithm applied to a class of nonlinear differential equations, J Appl Math, Vol.1(2001), No.4, p. 141–55.
[15] Ongun M Y: The laplace adomian decomposition method for solving a model for HIV infection of CD4+t cells, Math Comput Model, Vol.53(2011), No.5, p. 597–603.
[16] Sambath M., Balachandran K: Laplace adomian decomposition method for solving a fish farm model, Nonauton Dyn Syst, Vol.3(2016), No.1, p. 104–111.
[17] Bjørnstad, O.N., Shea K., Krzywinski M. et al.: The SEIRS model for infectious disease dynamics, Nat Methods, (2020), p.557–558.
[18] M. Caputo, M. Fabrizio: A new definition of fractional derivative without singular kernel, Prog Fract Differ Appl, Vol.1(2015), No.2, p. 73–85.
[19] Joel S: The laplace transform: Theory and applications, (1999).
[20] Caputo M: Elasticita e dissipazione, (1965).
[21] Adomian G: Convergent series solution of nonlinear equations, J Comput Appl Math,Vol.11(1984), No.2, p. 225–230.
[22] I.L. El-Kalla: Convergence of the adomian method applied to a class of nonlinear integral equations, Appl Math Lett, Vol.21(2008), No.4, p. 372–376.