magazinelogo

Journal of Applied Mathematics and Computation

ISSN Print: 2576-0645 Downloads: 163971 Total View: 1912536
Frequency: quarterly ISSN Online: 2576-0653 CODEN: JAMCEZ
Email: jamc@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/jamc.2018.08.002

Well-Posedness and Long-Time Dynamics of Geophysical Fluid Flows

Maleafisha Joseph Pekwa Stephen Tladi

Department of Mathematics and Applied Mathematics University of Limpopo Private Bag 1106 Polokwane, 0727 South Africa

*Corresponding author: Maleafisha Joseph Pekwa Stephen Tladi

Published: August 27,2018

Abstract

The author elucidates in a concrete way dynamical challenges concerning approximate inertial manifolds (AIMS), i.e., globally invariant, exponentially attracting, finite-dimensional smooth manifolds, for nonlinear dynamical systems on Hilbert spaces. The goal of this theory is to prove the basic theorem of approximation dynamics, wherein it is shown that there is a fundamental connection between the order of the approximating manifold and the well-posedness and long-time dynamics of the rotating Boussinesq and quasigeostrophic equations.

References

[1] D.J. ACHESON, Elementary fluid dynamics, Clarendon Press, Oxford, 1990. 

[2] R.A. ADAMS, Sobolev spaces, Academic Press, New York, 1975. 

[3] S. AGMON AND L. NIRENBERG, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space, Comm. Pure Appl. Math, 20 (1967), 207-229. 

[4] H. BAER AND K. STEPHAN. Heat and mass transfer, transl. by Janepark N., Springer-Verlag, Inc., New York, 1998. 

[5] S.H. BALASURIYA, Barriers and transport in unsteady flows: a Melnikov approach, SIAM, Philadelphia, 2017. 

[6] G.K. BATCHELOR. Introduction to fluid dynamics. Cambridge University Press, Cambridge, 1967. 

[7] A.J. BOURGEOIS AND J.T. BEALE, Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean, SIAM J. Math. Anal. 25 (4) 1994:1023-1068. 

[8] C. CANUTO, M.Y. HUSSAINI, A. QUARTERONI, AND T.A. ZANG, Spectral methods in fluid dynamics, Springer-Verlag, Inc., New York, 1988. 

[9] A. CONSTANTIN, Nonlinear water waves with applications to wave-current interactions and tsunamis, CBMS regional conference, SIAM, Philadelphia, 2011. 

[10] B. CUSHMAN-ROISIN, Introduction to geophysical fluid dynamics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1994. 

[11] C.M. DAFERMOS, Contraction semigroups and trend to equilibrium in continuum mechanics, Springer-Verlag, Inc., New York, 1976. 

[12] C.M. DAFERMOS, Hyperbolic conservation laws in continuum physics, 3rd ed., Springer-Verlag, Inc., New York, 2010. 

[13] F. DUMORTIER, H. KOKUBU, AND H. OKA, A degenerate singularity generating geometric Lorenz attractors, Ergod. Th. Dynam. Sys. 15 (1995) 833-856. 

[14] C. FOIAS, O. MANLEY AND R. TEMAM, Attractors for the Bernard problem: Existence and physical bounds on their fractal dimension, Nonlinear Anal. 11 (1987), 939-967. 

[15] C. FOIAS, G. SELL AND R. TEMAM, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), 309-353. 

[16] S.J. FRIEDLANDER, Lectures on stability and instability of ideal fluid, Institute of Advanced Studies, Princeton University, Princeton, 1999. 

[17] S.J. FRIEDLANDER, Introduction to the mathematical theory of geophysical fluid dynamics, North Holland, New York, 1980. 

[18] G.P. GALDI, An introduction to the mathematical theory of the Navier-Stokes equations, 

Springer-Verlag, Inc., New York, 1994. 

[19] G.P. GALDI AND M. PADULA, A new approach to energy theory in the stability of fluid motion, Arch. Rational Mech. Anal. 110 (1990), 187-286. 

[20] G.P. GALDI AND S. RIONERO, Weighted energy methods in fluid dynamics and elasticity, Springer-Verlag, Inc., New York, 1985. 

[21] J. GUCKENHEIMER AND P. HOLMES, Nonlinear oscillations, dynamical systems and bifurcation of vector fields, Springer-Verlag, Inc., New York, 1983. 

[22] M.E. GURTIN, An introduction to continuum mechanics, Academic Press, Inc., San Diego, 1981. 

[23] J.K. HALE AND H. KOCAK, Dynamics and bifurcations, Springer-Verlag, Inc., New York, 1991. 

[24] J.K. HALE AND S.M. VERDUYN LUNEL, Introduction to functional differential equations, Springer-Verlag, Inc., New York, 1993. 

[25] J.K. HALE AND S.-N. CHOW, Methods of bifurcation theory, Springer-Verlag, Inc.,New York, 1982. 

[26] J.K. HALE, Ordinary differential equations, Wiley-Interscience, New York, 1969. 

[27] G. HALLER, Chaos near resonance, Springer-Verlag, Inc., New York, 1999. 

[28] G. HALLER AND A.C. POJE, Finite time transport in aperiodic ows, Physica D 83 (1998) 353-380. 

[29] P. HARTMAN, Ordinary differential equations, SIAM, Philadelphia, 2002. 

[30] F. JOHN, Partial differential equations, 4th ed., Springer-Verlag, Inc., New York, 1971. 

[31] C.K.R.T. JONES, Session on dynamical systems: geometric singular perturbation theory, C.I.M.E. Lectures, 1994. 

[32] T. KATO, Perturbation theory for linear operators, Springer-Verlag, Inc. New York, 1966. 

[33] R.E. KHAYAT, Chaos and overstability in the thermal convection of viscoelastic fluids, J. Non-Newtonian Fluid Mech. 53 (1994) 227-255. 

[34] A. MAJDA, Introduction to PDE and waves for the atmosphere and ocean, Courant Institute of Mathematical Sciences, New York University, New York, 2003.

[35] A. MATSUMURU AND T. NISHIDA, The initial-boundary value problem for the equations of motion of general fluids, North-Holland Publishing Co., New York 10 (1982). 

[36] O.A. LADYZHENSKAYA, The mathematical theory of viscous incompressible flow, transl. by R.A. Silverman and J. Chu, Gordon and Breach Science Publishers, New York, 1969. 

[37] J.L. LUMLEY, G. BERKOOZ, AND P. HOLMES, Turbulence, coherent structures, dynamical systems and symmetry, Cambridge University Press, Cambridge, 1996. 

[38] J.L. LUMLEY, ed., Turbulence at the crossroads, Springer-Verlag, Inc., New York, 1990. 

[39] J. PEDLOSKY. Geophysical fluid dynamics, 2nd ed., Springer-Verlag, Inc., New York, 1987. 

[40] H.-O. PEITGEN, H. JURGENS, AND D. SAUPE, Chaos and fractals: new frontiers of science, Springer-Verlag, Inc., New York, 1992. 

[41] B.D. REDDY AND G.P. GALDI, Well-posedness of the problem of fiber suspension ows, J. Non-Newtonian Fluid Mech., 83 (1999) 205-230. 

[42] B.D. REDDY, Introductory functional analysis, Springer-Verlag, Inc., New York, 1998. 

[43] M. REED AND B. SIMON, Functional analysis, Academic Press, San Diego, 1980. 

[44] H.L. ROYDEN, Real Analysis, Macmillan Publishing Co., New York, 1988. 

[45] S. SMALE, Dynamics retrospective, Physica D 51 (1991) 267-273. 

[46] E.A. SPIEGEL AND G. VERONIS, On the Boussinesq approximation for a compressible fluid, Astrophy. J. 131 (1960) 442-447. 

[47] S.H. STROGATZ, Nonlinear dynamics and chaos, Addison-Wesley, New York, 1994. 

[48] R. TEMAM, Navier-Stokes equations and nonlinear functional analysis, CBMS regional conference, SIAM, Philadelphia, 1983. 

[49] R. TEMAM, Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag, Inc., New York, 1988. 

[50] R. TEMAM, Navier-Stokes equations: Theory and Numerical Analysis, AMS Chelsea Ed., Providence, 2001. 

[51] R. TEMAM, B. NICOLAENKO, C. FOIAS AND P. CONSTANTIN, Integral manifolds and inertial manifolds for dissipative partial differential equations, Springer-Verlag, Inc., New York, 1988. 

[52] E.S. TITI AND C. CAO, Global well-posedness of the three-dimensional stratified primitive equations with partial vertical mixing turbulence diffusion, Communications in Mathematical Physics, 310 (2012) 537-568. 

[53] E.S. TITI AND C. CAO, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Annals of Mathematics, 166 (2007) 245-267. 

[54] E.S. TITI, On approximate inertial manifolds to the Navier-Stokes equations, J. Math. Anal. And Appl., 149 (1990) 540-557. 

[55] M.S. TLADI, A Lagrangian and Eulerian analysis of a geophysical uid ow, submitted to Quaetiones Mathematicae. 

[56] M.S. TLADI, On the qualitative theory of the rotating Boussinesq and quasigeostrophic equations, Quaetiones Mathematicae 40 (6) 2017: 705-737. 

[57] M.S. TLADI, A geometric approach to differential equations, Lecture Notes, Department of Math. And Applied Math., University of Limpopo, 2009. 

[58] M.S. TLADI, Well-posedness and long-time dynamics of beta-plane ageostrophic flows, Ph.D. Thesis, Department of Math. And Applied Math., University of Cape Town, 2004. 

[59] A. TSINOBER AND H.K. MOFFATT, eds., Topological fluid mechanics, Cambridge University Press, Cambridge, 1990. 

[60] S. WANG, Attractors for the 3D baroclinic quasigeostrophic equations of large scale atmosphere, J. Math. Anal. And Appl. 165 (1992) 266-283. 

[61] S. WANG, J.L. LIONS AND R. TEMAM, New formulations of the primitive equations of the atmosphere and applications, Nonlinearity 5 (1992), 237-288. 

[62] S. WANG, J.L. LIONS AND R. TEMAM, On the equations of the large-scale ocean, Nonlinearity 5 (1992), 1007-1053. 

[63] S. WIGGINS, Chaotic transport in dynamical systems, Springer-Verlag, Inc., New York, 1992. 

[64] S. WIGGINS, Introduction to applied nonlinear dynamical systems and chaos, Springer-Verlag, Inc., New York, 1990. 

[65] P.A. WORFOLK AND W. CRAIG, An integrable normal form for water waves in infinite depth, Physica D 84 (1995) 513-531. 

[66] P.A. WORFOLK, J. GUCKENHEIMER, M. MYERS, F. WICKLIN AND A. BAK, DsTool: Computer assisted exploration of dynamical systems, Notices Amer. Math. Soc. 39 (1992), 303-309.

How to cite this paper

Well-Posedness and Long-Time Dynamics of Geophysical Fluid Flows

How to cite this paper: Maleafisha Joseph Pekwa Stephen Tladi. (2018) Well-Posedness and Long-Time Dynamics of Geophysical Fluid FlowsJournal of Applied Mathematics and Computation, 2(8), 291-331.

DOI: http://dx.doi.org/10.26855/jamc.2018.08.002