References
[1] D.J. ACHESON, Elementary fluid dynamics, Clarendon Press, Oxford, 1990.
[2] R.A. ADAMS, Sobolev spaces, Academic Press, New York, 1975.
[3] S. AGMON AND L. NIRENBERG, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space, Comm. Pure Appl. Math, 20 (1967), 207-229.
[4] H. BAER AND K. STEPHAN. Heat and mass transfer, transl. by Janepark N., Springer-Verlag, Inc., New York, 1998.
[5] S.H. BALASURIYA, Barriers and transport in unsteady flows: a Melnikov approach, SIAM, Philadelphia, 2017.
[6] G.K. BATCHELOR. Introduction to fluid dynamics. Cambridge University Press, Cambridge, 1967.
[7] A.J. BOURGEOIS AND J.T. BEALE, Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean, SIAM J. Math. Anal. 25 (4) 1994:1023-1068.
[8] C. CANUTO, M.Y. HUSSAINI, A. QUARTERONI, AND T.A. ZANG, Spectral methods in fluid dynamics, Springer-Verlag, Inc., New York, 1988.
[9] A. CONSTANTIN, Nonlinear water waves with applications to wave-current interactions and tsunamis, CBMS regional conference, SIAM, Philadelphia, 2011.
[10] B. CUSHMAN-ROISIN, Introduction to geophysical fluid dynamics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1994.
[11] C.M. DAFERMOS, Contraction semigroups and trend to equilibrium in continuum mechanics, Springer-Verlag, Inc., New York, 1976.
[12] C.M. DAFERMOS, Hyperbolic conservation laws in continuum physics, 3rd ed., Springer-Verlag, Inc., New York, 2010.
[13] F. DUMORTIER, H. KOKUBU, AND H. OKA, A degenerate singularity generating geometric Lorenz attractors, Ergod. Th. Dynam. Sys. 15 (1995) 833-856.
[14] C. FOIAS, O. MANLEY AND R. TEMAM, Attractors for the Bernard problem: Existence and physical bounds on their fractal dimension, Nonlinear Anal. 11 (1987), 939-967.
[15] C. FOIAS, G. SELL AND R. TEMAM, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations 73 (1988), 309-353.
[16] S.J. FRIEDLANDER, Lectures on stability and instability of ideal fluid, Institute of Advanced Studies, Princeton University, Princeton, 1999.
[17] S.J. FRIEDLANDER, Introduction to the mathematical theory of geophysical fluid dynamics, North Holland, New York, 1980.
[18] G.P. GALDI, An introduction to the mathematical theory of the Navier-Stokes equations,
Springer-Verlag, Inc., New York, 1994.
[19] G.P. GALDI AND M. PADULA, A new approach to energy theory in the stability of fluid motion, Arch. Rational Mech. Anal. 110 (1990), 187-286.
[20] G.P. GALDI AND S. RIONERO, Weighted energy methods in fluid dynamics and elasticity, Springer-Verlag, Inc., New York, 1985.
[21] J. GUCKENHEIMER AND P. HOLMES, Nonlinear oscillations, dynamical systems and bifurcation of vector fields, Springer-Verlag, Inc., New York, 1983.
[22] M.E. GURTIN, An introduction to continuum mechanics, Academic Press, Inc., San Diego, 1981.
[23] J.K. HALE AND H. KOCAK, Dynamics and bifurcations, Springer-Verlag, Inc., New York, 1991.
[24] J.K. HALE AND S.M. VERDUYN LUNEL, Introduction to functional differential equations, Springer-Verlag, Inc., New York, 1993.
[25] J.K. HALE AND S.-N. CHOW, Methods of bifurcation theory, Springer-Verlag, Inc.,New York, 1982.
[26] J.K. HALE, Ordinary differential equations, Wiley-Interscience, New York, 1969.
[27] G. HALLER, Chaos near resonance, Springer-Verlag, Inc., New York, 1999.
[28] G. HALLER AND A.C. POJE, Finite time transport in aperiodic ows, Physica D 83 (1998) 353-380.
[29] P. HARTMAN, Ordinary differential equations, SIAM, Philadelphia, 2002.
[30] F. JOHN, Partial differential equations, 4th ed., Springer-Verlag, Inc., New York, 1971.
[31] C.K.R.T. JONES, Session on dynamical systems: geometric singular perturbation theory, C.I.M.E. Lectures, 1994.
[32] T. KATO, Perturbation theory for linear operators, Springer-Verlag, Inc. New York, 1966.
[33] R.E. KHAYAT, Chaos and overstability in the thermal convection of viscoelastic fluids, J. Non-Newtonian Fluid Mech. 53 (1994) 227-255.
[34] A. MAJDA, Introduction to PDE and waves for the atmosphere and ocean, Courant Institute of Mathematical Sciences, New York University, New York, 2003.
[35] A. MATSUMURU AND T. NISHIDA, The initial-boundary value problem for the equations of motion of general fluids, North-Holland Publishing Co., New York 10 (1982).
[36] O.A. LADYZHENSKAYA, The mathematical theory of viscous incompressible flow, transl. by R.A. Silverman and J. Chu, Gordon and Breach Science Publishers, New York, 1969.
[37] J.L. LUMLEY, G. BERKOOZ, AND P. HOLMES, Turbulence, coherent structures, dynamical systems and symmetry, Cambridge University Press, Cambridge, 1996.
[38] J.L. LUMLEY, ed., Turbulence at the crossroads, Springer-Verlag, Inc., New York, 1990.
[39] J. PEDLOSKY. Geophysical fluid dynamics, 2nd ed., Springer-Verlag, Inc., New York, 1987.
[40] H.-O. PEITGEN, H. JURGENS, AND D. SAUPE, Chaos and fractals: new frontiers of science, Springer-Verlag, Inc., New York, 1992.
[41] B.D. REDDY AND G.P. GALDI, Well-posedness of the problem of fiber suspension ows, J. Non-Newtonian Fluid Mech., 83 (1999) 205-230.
[42] B.D. REDDY, Introductory functional analysis, Springer-Verlag, Inc., New York, 1998.
[43] M. REED AND B. SIMON, Functional analysis, Academic Press, San Diego, 1980.
[44] H.L. ROYDEN, Real Analysis, Macmillan Publishing Co., New York, 1988.
[45] S. SMALE, Dynamics retrospective, Physica D 51 (1991) 267-273.
[46] E.A. SPIEGEL AND G. VERONIS, On the Boussinesq approximation for a compressible fluid, Astrophy. J. 131 (1960) 442-447.
[47] S.H. STROGATZ, Nonlinear dynamics and chaos, Addison-Wesley, New York, 1994.
[48] R. TEMAM, Navier-Stokes equations and nonlinear functional analysis, CBMS regional conference, SIAM, Philadelphia, 1983.
[49] R. TEMAM, Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag, Inc., New York, 1988.
[50] R. TEMAM, Navier-Stokes equations: Theory and Numerical Analysis, AMS Chelsea Ed., Providence, 2001.
[51] R. TEMAM, B. NICOLAENKO, C. FOIAS AND P. CONSTANTIN, Integral manifolds and inertial manifolds for dissipative partial differential equations, Springer-Verlag, Inc., New York, 1988.
[52] E.S. TITI AND C. CAO, Global well-posedness of the three-dimensional stratified primitive equations with partial vertical mixing turbulence diffusion, Communications in Mathematical Physics, 310 (2012) 537-568.
[53] E.S. TITI AND C. CAO, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Annals of Mathematics, 166 (2007) 245-267.
[54] E.S. TITI, On approximate inertial manifolds to the Navier-Stokes equations, J. Math. Anal. And Appl., 149 (1990) 540-557.
[55] M.S. TLADI, A Lagrangian and Eulerian analysis of a geophysical uid ow, submitted to Quaetiones Mathematicae.
[56] M.S. TLADI, On the qualitative theory of the rotating Boussinesq and quasigeostrophic equations, Quaetiones Mathematicae 40 (6) 2017: 705-737.
[57] M.S. TLADI, A geometric approach to differential equations, Lecture Notes, Department of Math. And Applied Math., University of Limpopo, 2009.
[58] M.S. TLADI, Well-posedness and long-time dynamics of beta-plane ageostrophic flows, Ph.D. Thesis, Department of Math. And Applied Math., University of Cape Town, 2004.
[59] A. TSINOBER AND H.K. MOFFATT, eds., Topological fluid mechanics, Cambridge University Press, Cambridge, 1990.
[60] S. WANG, Attractors for the 3D baroclinic quasigeostrophic equations of large scale atmosphere, J. Math. Anal. And Appl. 165 (1992) 266-283.
[61] S. WANG, J.L. LIONS AND R. TEMAM, New formulations of the primitive equations of the atmosphere and applications, Nonlinearity 5 (1992), 237-288.
[62] S. WANG, J.L. LIONS AND R. TEMAM, On the equations of the large-scale ocean, Nonlinearity 5 (1992), 1007-1053.
[63] S. WIGGINS, Chaotic transport in dynamical systems, Springer-Verlag, Inc., New York, 1992.
[64] S. WIGGINS, Introduction to applied nonlinear dynamical systems and chaos, Springer-Verlag, Inc., New York, 1990.
[65] P.A. WORFOLK AND W. CRAIG, An integrable normal form for water waves in infinite depth, Physica D 84 (1995) 513-531.
[66] P.A. WORFOLK, J. GUCKENHEIMER, M. MYERS, F. WICKLIN AND A. BAK, DsTool: Computer assisted exploration of dynamical systems, Notices Amer. Math. Soc. 39 (1992), 303-309.