International Journal of Food Science and Agriculture

ISSN Print: 2578-3467 Downloads: 122054 Total View: 2264049
Frequency: quarterly ISSN Online: 2578-3475 CODEN: IJFSJ3

Study of the Population Structure in Schnauzer Dogs

Giovane Krebs1, Luciano Trevizan1,*, Maria Malane Magalhães Muniz2, Juliana Dementshuk Machado1, Fabiana Michelsen de Andrade1, Adriana Weber1, Jaime Araújo Cobuci1

1Animal Science Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

2Department of Animal Biosciences, University of Guelph, Guelph, Ontário, Canada.

*Corresponding author: Luciano Trevizan

Published: January 17,2023


The aim of this study was to evaluate the population structure of a Schnauzer dogs kennel. Pedigree data of 129 dogs were collected from a kennel in Southern Brazil. Dogs were divided into groups by height (“miniature”, “standard”, and “giant”) and subsequently, into coat color subgroups (“not informed”, “salt and pepper”, “black”, “white”, and “black and silver”). Population parameters were estimated using the Contribution, Inbreeding, Coancestry (CFC), and RelaX2 programs. Three ancestral generations were traced from the kennel dogs, totaling 685 unique individuals. Of these, 42% were considered founders. The analysis of the effective number of founders, number of effective ancestors, and inbreeding coefficient means were77, 44.9, and 0.08 for the miniature group, 26, 11.7 and 0.05for the standard group, and 28, 9.9 and 0.12 for the giant group, respectively. The subgroup “salt and pepper” in the “giant” group showed the highest inbreeding coefficient (0.14) and the highest kinship coefficient (0.20). Monitoring inbreeding allows to control upcoming breeding to acquire desirable characteristics in the population minimizing risk of deleterious effects.


[1] Federation Cynologique International - FCI. FCI Breeds Nomeclature. (2007) Available in: 

<>; Access in: 30 de maio de 2019.

[2] Mellersh, C. (2008). Give a dog a genome. Vet. J., 1, 46-52. doi: 10.1016/j.tvjl.2007.06.029.

[3] Queiroz, S.A.D., Albuquerque, L.G.D., Lanzoni, N.A. (2000). Efeito da endogamia sobre características de crescimento de bovinos da raça Gir no Brasil. R. Bras. Zootec., 4, 1014-1019. Doi:10.1590/S1516-35982000000400010. 

[4] Lozada-Soto E.A., Maltecca C., Lu D., Miller S., Cole J.B., Tiezzi F. (2021). Trends in genetic diversity and the effect of inbreeding in American Angus cattle under genomic selection. Genet SelEvol., 53(1):50. doi:10.1186/s12711-021-00644-z.

[5] Dickerson, G.E. (1963). Biological interpretation of the genetic parameters of populations. WD Hanson, y HF Robinson. Statistical genetic and plant breeding. Washington, D. C. NAS-NCR. Pub, 95-107.

[6] Laseca N, Anaya G, Peña Z, Pirosanto Y, Molina A, Demyda. Peyrás S. (2021). Impaired Reproductive Function in Equines: From Genetics to Genomics. Animals (Basel), 11(2):393. Published 2021 Feb 3. doi:10.3390/ani11020393.

[7] Jansson, M., Laikre, L. (2018). Pedigree data indicate rapid inbreeding and loss of genetic diversity within populations of native, traditional dog breeds of conservation concern. Plos One 13 (9): e0202849. doi: 10.1371/journal.pone.0202849.

[8] Ostrander, E.A. (2008). Base genética de la morfología canina. Investig. Cienc., 26-34.

[9] Cole, J.B.; Franke, D.E.; Leighton, E.A. (2004). Population structure of a colony of dog guides. J. Anim. Sci., 10, 2906-2912. doi: 10.2527/2004.82102906x.

[10] Gutiérrez, J.P., Cervantes, I., Goyache, F. (2009). Improving the estimation of realized effective population sizes in farm animals. J. Anim. Breed. Genet., 4, 327-332. doi: 10.1111/j.1439-0388.2009.00810.x.

[11] Sargolzaei, M., Iwaisaki, H., Jacques Colleau, J. (2006). “CFC: A tool for monitoring genetic diversity.” Proc. 8th World Congr. Genet. Appl. Livest. Prod., CD-ROM communication 27-28, 13-18.

[12] Boichard, D., Maignel, L., Verrier, É. (1997). The value of using probabilities of gene origin to measure genetic variability in a population. Genet. Selec. Evol., 29, 5. doi: 10.1186/1297-9686-29-1-5.

[13] Meuwissen, T.H.E., Luo, Z. (1992). Computing inbreeding coefficients in large populations. Genetics Selection Evolution, 24(4), 305-313. doi: 10.1186/1297-9686-24-4-305.

[14] Ács, V., Bokor, Á., Nagy, I. (2019). Population structure analysis of the border collie dog breed in Hungary. Animals, 9, 250. doi: 10.3390/ani9050250.

[15] Leroy, G., Rognon X, Varlet A, Joffrin C, Verrier E. (2006). Genetic variability in French dog breeds assessed by pedigree data. J. Anim. Breed. Genet., 123, 1, 1-9. doi:10.1111/j.1439-0388.2006.00565.x.

[16] Machado-Schiaffino, G., Dopico, E., Garcia-Vazquez, E. (2007). Genetic variation losses in Atlantic salmon stocks created for supportive breeding. Aquaculture, 264, 59-65. doi: 10.1016/j.aquaculture.2006.12.026.

[17] Andrade, F.M.D., Silva, M.M.D., Krebs, G., Feltes, G.L., Cobuci, J.A. (2021). Inbreeding on litter size of German Spitz dogs. RevistaBrasileira de Zootecnia, 50. 

[18] Burrow, H.M. (1993). The effects of inbreeding in beef cattle. In Anim. Breed. Abstr., 61, 11, 737-751.

[19] Frankham, R. (2005). Genetics and extinction. Biol. Conserv., 2, 131-140. 

[20] Wildt, D.E. Baas E.J., Chakraborty P.K., Wolfle T.L., Stewart A.P. (1982). Influence of inbreeding on reproductive performance, ejaculate quality and testicular volume in the dog. Theriogenology, 17 (4), 445-452. 

[21] Karjalainen, L., Ojala, M. (1997). Generation intervals and inbreeding coefficients in the Finnish Hound and the Finnish Spitz. J. Anim. Breed. Genet., 1-6, 33-41. doi: 10.1111/j.1439-0388.1997.tb00489.x.

How to cite this paper

Study of the Population Structure in Schnauzer Dogs

How to cite this paper:  Giovane Krebs, Luciano Trevizan, Maria Malane Magalhães Muniz, Juliana Dementshuk Machado, Fabiana Michelsen de Andrade, Adriana Weber, Jaime Araújo Cobuci. (2022) Study of the Population Structure in Schnauzer Dogs. International Journal of Food Science and Agriculture6(4), 422-427.