magazinelogo

International Journal of Food Science and Agriculture

ISSN Print: 2578-3467 Downloads: 224646 Total View: 3024141
Frequency: quarterly ISSN Online: 2578-3475 CODEN: IJFSJ3
Email: ijfsa@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/ijfsa.2023.03.005

Carotenoids from Blakeslea trispora

Nida Tabassum Khan

Department of Biotechnology, Faculty of Life Sciences & Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Takatu Campus, Airport Road, Quetta, Balochistan, Pakistan.

*Corresponding author: Nida Tabassum Khan

Published: January 31,2023

Abstract

Blakeslea trisporais mold, from division Zygomycota. This specie is known for its capacity to produce carotenoids, beta carotene and lycopene etc. These pigments are valuable food coloring agents that might have beneficial impacts for human wellbeing such as antioxidants. Presently, Blakeslea trispora is utilized to fabricate β-Carotene and astaxanthin on large scale that is used as a source of provitamin A or retinol and food additive in animal/aquaculture feed respectively. In addition, carotenoid including lycopene, phytoene and phytofluene are also obtained from Blakeslea trispora. Among all carotenoids, β-Carotene is also used for numerous clinical purposes such as in preventing cardiovascular diseases and cancer, inducing apoptosis in tumor cells, stimulating body’s immune system, and provides protection against reactive oxygen species (ROS). In addition, β-Carotene is widely incorporated in cosmetics and body-care products. Besides β-Carotene is a significant carotenoid that moreover utilized as a feedstock additive in foods formulated for domestic pets.

References

[1] Hsu, W. J., Yokoyama, H., & Coggins Jr, C. W. (1972). Carotenoid biosynthesis in Blakeslea trispora. Phytochemistry, 11(10), 2985-2990.

[2] Ninet, L., Renaut, J., & Tissier, R. (1969). Activation of the biosynthesis of carotenoids by Blakeslea trispora. Biotechnology and Bioengineering, 11(6), 1195-1210.

[3] Dufossé, L. (2006). Microbial production of food grade pigments. Food technology and Biotechnology, 44(3), 313-323.

[4] Van den Ende, H. (1968). Relationship between sexuality and carotene synthesis in Blakeslea trispora. Journal of Bacteriology, 96(4), 1298-1303.

[5] Rodríguez-Sáiz, M., Paz, B., De La Fuente, J. L., López-Nieto, M. J., Cabri, W., & Barredo, J. L. (2004). Blakeslea trispora genes for carotene biosynthesis. Applied and environmental microbiology, 70(9), 5589-5594.

[6] Trispora, B. L. A. K. E. S. L. E. A. (2003). Application for the approval of lycopene from Blakeslea trispora.

[7] Mantzouridou, F., Roukasa, T., Kotzekidoua, P., & Liakopoulou, M. (2002). Optimization of β-carotene production from synthetic medium by Blakeslea trispora. Applied biochemistry and biotechnology, 101(2), 153-175.

[8] López-Nieto, M. J., Costa, J., Peiro, E., Méndez, E., Rodríguez-Sáiz, M., De la Fuente, J. L., ... & Barredo, J. L. (2004). Bio-technological lycopene production by mated fermentation of Blakeslea trispora. Applied microbiology and biotechnology, 66(2), 153-159.

[9] Tanaka, Y., Sasaki, N., & Ohmiya, A. (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal, 54(4), 733-749.

[10] Setyorini, D. (2021). Terpenoids: Lycopene in tomatoes. In Terpenes and Terpenoids-Recent Advances. IntechOpen.

[11] Bryon, A., Kurlovs, A. H., Van Leeuwen, T., & Clark, R. M. (2017). A molecular‐genetic understanding of diapause in spider mites: current knowledge and future directions. Physiological Entomology, 42(3), 211-224.

[12] Parker, R. S., Swanson, J. E., You, C. S., Edwards, A. J., & Huang, T. (1999). Bioavailability of carotenoids in human subjects. Proceedings of the Nutrition Society, 58(1), 155-162.

[13] Ram, S., Mitra, M., Shah, F., Tirkey, S. R., & Mishra, S. (2020). Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. Journal of Functional Foods, 67, 103867.

[14] Miller, N. J., Sampson, J., Candeias, L. P., Bramley, P. M., & Rice-Evans, C. A. (1996). Antioxidant activities of carotenes and xanthophylls. FEBS letters, 384(3), 240-242.

[15] Feofilova, E. P. (1994). Fungal carotenoids: biological functions and practical use. Prikladnaia Biokhimiia i Mikrobiologiia, 30(2), 181-195.

[16] Igreja, W. S., Maia, F. D. A., Lopes, A. S., & Chisté, R. C. (2021). Biotechnological production of carotenoids using low cost-substrates is influenced by cultivation parameters: A review. International Journal of Molecular Sciences, 22(16), 8819.

[17] Mussagy, C. U., Khan, S., & Kot, A. M. (2021). Current developments on the application of microbial carotenoids as an alter-native to synthetic pigments. Critical Reviews in Food Science and Nutrition, 1-15.

[18] Sodhi, A. S., Sharma, N., Bhatia, S., Verma, A., Soni, S., & Batra, N. (2022). Insights on sustainable approaches for production and applications of value added products. Chemosphere, 286, 131623.

[19] Jantama, K. (2022). Technology toward biochemicals precursors and bioplastic production. In AZ of Biorefinery (pp. 265-341). Elsevier.

[20] Zohir, W. F., Kapase, V. U., Nawkarkar, P., & Kumar, S. (2022). Algal Life Cycle Analysis and Its Contribution to the Circular Economy. In Handbook of Research on Algae as a Sustainable Solution for Food, Energy, and the Environment (pp. 256-286). IGI Global.

[21] Papaioannou, E. H., & Liakopoulou-Kyriakides, M. (2010). Substrate contribution on carotenoids production in Blakeslea trispora cultivations. Food and Bioproducts Processing, 88(2-3), 305-311.

[22] Xu, F., Yuan, Q. P., & Zhu, Y. (2007). Improved production of lycopene and β-carotene by Blakeslea trispora with oxygen-vectors. Process Biochemistry, 42(2), 289-293.

[23] Mantzouridou, F., & Tsimidou, M. Z. (2008). Lycopene formation in Blakeslea trispora. Chemical aspects of a bioprocess. Trends in food science & technology, 19(7), 363-371.

[24] Sevgili, A., & Erkmen, O. (2019). Improved lycopene production from different substrates by mated fermentation of Blakeslea trispora. Foods, 8(4), 120.

[25] Wang, Y., Chen, X., Hong, X., Du, S., Liu, C., Gong, W., & Chen, D. (2016). Cyclase inhibitor tripropylamine significantly enhanced lycopene accumulation in Blakeslea trispora. Journal of bioscience and bioengineering, 122(5), 570-576.

[26] Choudhari, S. M., Ananthanarayan, L., & Singhal, R. S. (2008). Use of metabolic stimulators and inhibitors for enhanced production of β-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresource technology, 99(8), 3166-3173.

[27] Hu, W., Dai, D., & Li, W. (2013). Anti-aging effect of Blakeslea trispora powder on adult mice. Biotechnology letters, 35(8), 1309-1315.

[28] Sgherri, C., Pérez-López, U., & Pinzino, C. (2015). Antioxidant properties of food products containing lycopene are increased by the presence of chlorophyll. Lycopene: Food Sources, Potential Role in Human Health and Antioxidant Effects Edited by bailey JR. New York: Nova Science Publishers, inc, 39-90.

[29] Imran, M., Ghorat, F., Ul-Haq, I., Ur-Rehman, H., Aslam, F., Heydari, M., ... & Rebezov, M. (2020). Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants, 9(8), 706.

[30] Mehta, B. J., & Cerdá-Olmedo, E. (1995). Mutants of carotene production in Blakeslea trispora. Applied microbiology and biotechnology, 42(6), 836-838.

[31] Wang, C., Zhao, S., Shao, X., Park, J. B., Jeong, S. H., Park, H. J., ... & Kim, S. W. (2019). Challenges and tackles in metabolic engineering for microbial production of carotenoids. Microbial Cell Factories, 18(1), 1-8.

[32] Papaioannou, E. H., Stoforos, N. G., & Liakopoulou-Kyriakides, M. (2011). Substrate contribution on free radical scavenging capacity of carotenoid extracts produced from Blakeslea trispora cultures. World Journal of Microbiology and Biotechnology, 27(4), 851-858.

[33] Rapoport, A., Guzhova, I., Bernetti, L., Buzzini, P., Kieliszek, M., & Kot, A. M. (2021). Carotenoids and some other pigments from fungi and yeasts. Metabolites, 11(2), 92.

[34] Mehta, B. J., Obraztsova, I. N., & Cerdá-Olmedo, E. (2003). Mutants and intersexual heterokaryons of Blakeslea trispora for production of β-carotene and lycopene. Applied and environmental microbiology, 69(7), 4043-4048.

[35] Saini, R. K., Nile, S. H., & Park, S. W. (2015). Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bio-availability and biological activities. Food Research International, 76, 735-750.

[36] Olson, J. A. (1994). Needs and sources of carotenoids and vitamin A. Nutrition reviews, 52(2), S67.

[37] Böhme, K., Richter, C., & Pätz, R. (2006). New insights into mechanisms of growth and β‐carotene production in Blakeslea trispora. Biotechnology Journal: Healthcare Nutrition Technology, 1(10), 1080-1084.

[38] Goksungur, Y., Mantzouridou, F., & Roukas, T. (2002). Optimization of the production of β‐carotene from molasses by Blakeslea trispora: a statistical approach. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 77(8), 933-943.

[39] Mantzouridou, F., Naziri, E., & Tsimidou, M. Z. (2008). Industrial glycerol as a supplementary carbon source in the production of β-carotene by Blakeslea trispora. Journal of agricultural and food chemistry, 56(8), 2668-2675.

[40] Varzakakou, M., & Roukas, T. (2009). Identification of carotenoids produced from cheese whey by Blakeslea trispora in submerged fermentation. Preparative Biochemistry and Biotechnology, 40(1), 76-82.

[41] Roukas, T., & Mantzouridou, F. (2001). An improved method for extraction of β-carotene from Blakeslea trispora. Applied biochemistry and biotechnology, 90(1), 37-45.

[42] Papaioannou, E., Roukas, T., & Liakopoulou-Kyriakides, M. (2008). Effect of biomass pre-treatment and solvent extraction on β-carotene and lycopene recovery from Blakeslea trispora cells. Preparative biochemistry & biotechnology, 38(3), 246-256.

[43] Lee, I. M., Cook, N. R., Manson, J. E., Buring, J. E., & Hennekens, C. H. (1999). β-Carotene supplementation and incidence of cancer and cardiovascular disease: the Women's Health Study. Journal of the National Cancer Institute, 91(24), 2102-2106.

[44] Palozza, P., Serini, S., Torsello, A., Di Nicuolo, F., Maggiano, N., Ranelletti, F. O., ... & Calviello, G. (2003). Mechanism of activation of caspase cascade during β-carotene-induced apoptosis in human tumor cells. Nutrition and cancer, 47(1), 76-87.

[45] Omaye, S. T., Krinsky, N. I., Kagan, V. E., Mayne, S. T., Liebler, D. C., & Bidlack, W. R. (1997). β-Carotene: friend or foe? Toxicological Sciences, 40(2), 163-174.

[46] Chew, B. P., & Park, J. S. (2004). Carotenoid action on the immune response. The Journal of nutrition, 134(1), 257S-261S.

[47] Akram, S., Mushtaq, M., & Waheed, A. (2021). β-Carotene: beyond provitamin A. In A Centum of Valuable Plant Bioactives (pp. 1-31). Academic Press.

[48] Mahesh, S. K., Fathima, J., & Veena, V. G. (2019). Cosmetic potential of natural products: industrial applications. In Natural Bio-active compounds (pp. 215-250). Springer, Singapore.

[49] Chattopadhyay, P., Chatterjee, S., & Sen, S. K. (2008). Biotechnological potential of natural food grade biocolorants. African Journal of Biotechnology, 7(17).

[50] Jannel, S., Caro, Y., Bermudes, M., & Petit, T. (2020). Novel insights into the biotechnological production of Haematococcus pluvialis-derived astaxanthin: Advances and key challenges to allow its industrial use as novel food ingredient. Journal of Marine Science and Engineering, 8(10), 789.

How to cite this paper

Carotenoids from Blakeslea trispora

How to cite this paper:  Nida Tabassum Khan. (2023) Carotenoids from Blakeslea trisporaInternational Journal of Food Science and Agriculture7(1), 29-32.

DOI: http://dx.doi.org/10.26855/ijfsa.2023.03.004