References
[1] Hsu, W. J., Yokoyama, H., & Coggins Jr, C. W. (1972). Carotenoid biosynthesis in Blakeslea trispora. Phytochemistry, 11(10), 2985-2990.
[2] Ninet, L., Renaut, J., & Tissier, R. (1969). Activation of the biosynthesis of carotenoids by Blakeslea trispora. Biotechnology and Bioengineering, 11(6), 1195-1210.
[3] Dufossé, L. (2006). Microbial production of food grade pigments. Food technology and Biotechnology, 44(3), 313-323.
[4] Van den Ende, H. (1968). Relationship between sexuality and carotene synthesis in Blakeslea trispora. Journal of Bacteriology, 96(4), 1298-1303.
[5] Rodríguez-Sáiz, M., Paz, B., De La Fuente, J. L., López-Nieto, M. J., Cabri, W., & Barredo, J. L. (2004). Blakeslea trispora genes for carotene biosynthesis. Applied and environmental microbiology, 70(9), 5589-5594.
[6] Trispora, B. L. A. K. E. S. L. E. A. (2003). Application for the approval of lycopene from Blakeslea trispora.
[7] Mantzouridou, F., Roukasa, T., Kotzekidoua, P., & Liakopoulou, M. (2002). Optimization of β-carotene production from synthetic medium by Blakeslea trispora. Applied biochemistry and biotechnology, 101(2), 153-175.
[8] López-Nieto, M. J., Costa, J., Peiro, E., Méndez, E., Rodríguez-Sáiz, M., De la Fuente, J. L., ... & Barredo, J. L. (2004). Bio-technological lycopene production by mated fermentation of Blakeslea trispora. Applied microbiology and biotechnology, 66(2), 153-159.
[9] Tanaka, Y., Sasaki, N., & Ohmiya, A. (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal, 54(4), 733-749.
[10] Setyorini, D. (2021). Terpenoids: Lycopene in tomatoes. In Terpenes and Terpenoids-Recent Advances. IntechOpen.
[11] Bryon, A., Kurlovs, A. H., Van Leeuwen, T., & Clark, R. M. (2017). A molecular‐genetic understanding of diapause in spider mites: current knowledge and future directions. Physiological Entomology, 42(3), 211-224.
[12] Parker, R. S., Swanson, J. E., You, C. S., Edwards, A. J., & Huang, T. (1999). Bioavailability of carotenoids in human subjects. Proceedings of the Nutrition Society, 58(1), 155-162.
[13] Ram, S., Mitra, M., Shah, F., Tirkey, S. R., & Mishra, S. (2020). Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. Journal of Functional Foods, 67, 103867.
[14] Miller, N. J., Sampson, J., Candeias, L. P., Bramley, P. M., & Rice-Evans, C. A. (1996). Antioxidant activities of carotenes and xanthophylls. FEBS letters, 384(3), 240-242.
[15] Feofilova, E. P. (1994). Fungal carotenoids: biological functions and practical use. Prikladnaia Biokhimiia i Mikrobiologiia, 30(2), 181-195.
[16] Igreja, W. S., Maia, F. D. A., Lopes, A. S., & Chisté, R. C. (2021). Biotechnological production of carotenoids using low cost-substrates is influenced by cultivation parameters: A review. International Journal of Molecular Sciences, 22(16), 8819.
[17] Mussagy, C. U., Khan, S., & Kot, A. M. (2021). Current developments on the application of microbial carotenoids as an alter-native to synthetic pigments. Critical Reviews in Food Science and Nutrition, 1-15.
[18] Sodhi, A. S., Sharma, N., Bhatia, S., Verma, A., Soni, S., & Batra, N. (2022). Insights on sustainable approaches for production and applications of value added products. Chemosphere, 286, 131623.
[19] Jantama, K. (2022). Technology toward biochemicals precursors and bioplastic production. In AZ of Biorefinery (pp. 265-341). Elsevier.
[20] Zohir, W. F., Kapase, V. U., Nawkarkar, P., & Kumar, S. (2022). Algal Life Cycle Analysis and Its Contribution to the Circular Economy. In Handbook of Research on Algae as a Sustainable Solution for Food, Energy, and the Environment (pp. 256-286). IGI Global.
[21] Papaioannou, E. H., & Liakopoulou-Kyriakides, M. (2010). Substrate contribution on carotenoids production in Blakeslea trispora cultivations. Food and Bioproducts Processing, 88(2-3), 305-311.
[22] Xu, F., Yuan, Q. P., & Zhu, Y. (2007). Improved production of lycopene and β-carotene by Blakeslea trispora with oxygen-vectors. Process Biochemistry, 42(2), 289-293.
[23] Mantzouridou, F., & Tsimidou, M. Z. (2008). Lycopene formation in Blakeslea trispora. Chemical aspects of a bioprocess. Trends in food science & technology, 19(7), 363-371.
[24] Sevgili, A., & Erkmen, O. (2019). Improved lycopene production from different substrates by mated fermentation of Blakeslea trispora. Foods, 8(4), 120.
[25] Wang, Y., Chen, X., Hong, X., Du, S., Liu, C., Gong, W., & Chen, D. (2016). Cyclase inhibitor tripropylamine significantly enhanced lycopene accumulation in Blakeslea trispora. Journal of bioscience and bioengineering, 122(5), 570-576.
[26] Choudhari, S. M., Ananthanarayan, L., & Singhal, R. S. (2008). Use of metabolic stimulators and inhibitors for enhanced production of β-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresource technology, 99(8), 3166-3173.
[27] Hu, W., Dai, D., & Li, W. (2013). Anti-aging effect of Blakeslea trispora powder on adult mice. Biotechnology letters, 35(8), 1309-1315.
[28] Sgherri, C., Pérez-López, U., & Pinzino, C. (2015). Antioxidant properties of food products containing lycopene are increased by the presence of chlorophyll. Lycopene: Food Sources, Potential Role in Human Health and Antioxidant Effects Edited by bailey JR. New York: Nova Science Publishers, inc, 39-90.
[29] Imran, M., Ghorat, F., Ul-Haq, I., Ur-Rehman, H., Aslam, F., Heydari, M., ... & Rebezov, M. (2020). Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants, 9(8), 706.
[30] Mehta, B. J., & Cerdá-Olmedo, E. (1995). Mutants of carotene production in Blakeslea trispora. Applied microbiology and biotechnology, 42(6), 836-838.
[31] Wang, C., Zhao, S., Shao, X., Park, J. B., Jeong, S. H., Park, H. J., ... & Kim, S. W. (2019). Challenges and tackles in metabolic engineering for microbial production of carotenoids. Microbial Cell Factories, 18(1), 1-8.
[32] Papaioannou, E. H., Stoforos, N. G., & Liakopoulou-Kyriakides, M. (2011). Substrate contribution on free radical scavenging capacity of carotenoid extracts produced from Blakeslea trispora cultures. World Journal of Microbiology and Biotechnology, 27(4), 851-858.
[33] Rapoport, A., Guzhova, I., Bernetti, L., Buzzini, P., Kieliszek, M., & Kot, A. M. (2021). Carotenoids and some other pigments from fungi and yeasts. Metabolites, 11(2), 92.
[34] Mehta, B. J., Obraztsova, I. N., & Cerdá-Olmedo, E. (2003). Mutants and intersexual heterokaryons of Blakeslea trispora for production of β-carotene and lycopene. Applied and environmental microbiology, 69(7), 4043-4048.
[35] Saini, R. K., Nile, S. H., & Park, S. W. (2015). Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bio-availability and biological activities. Food Research International, 76, 735-750.
[36] Olson, J. A. (1994). Needs and sources of carotenoids and vitamin A. Nutrition reviews, 52(2), S67.
[37] Böhme, K., Richter, C., & Pätz, R. (2006). New insights into mechanisms of growth and β‐carotene production in Blakeslea trispora. Biotechnology Journal: Healthcare Nutrition Technology, 1(10), 1080-1084.
[38] Goksungur, Y., Mantzouridou, F., & Roukas, T. (2002). Optimization of the production of β‐carotene from molasses by Blakeslea trispora: a statistical approach. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 77(8), 933-943.
[39] Mantzouridou, F., Naziri, E., & Tsimidou, M. Z. (2008). Industrial glycerol as a supplementary carbon source in the production of β-carotene by Blakeslea trispora. Journal of agricultural and food chemistry, 56(8), 2668-2675.
[40] Varzakakou, M., & Roukas, T. (2009). Identification of carotenoids produced from cheese whey by Blakeslea trispora in submerged fermentation. Preparative Biochemistry and Biotechnology, 40(1), 76-82.
[41] Roukas, T., & Mantzouridou, F. (2001). An improved method for extraction of β-carotene from Blakeslea trispora. Applied biochemistry and biotechnology, 90(1), 37-45.
[42] Papaioannou, E., Roukas, T., & Liakopoulou-Kyriakides, M. (2008). Effect of biomass pre-treatment and solvent extraction on β-carotene and lycopene recovery from Blakeslea trispora cells. Preparative biochemistry & biotechnology, 38(3), 246-256.
[43] Lee, I. M., Cook, N. R., Manson, J. E., Buring, J. E., & Hennekens, C. H. (1999). β-Carotene supplementation and incidence of cancer and cardiovascular disease: the Women's Health Study. Journal of the National Cancer Institute, 91(24), 2102-2106.
[44] Palozza, P., Serini, S., Torsello, A., Di Nicuolo, F., Maggiano, N., Ranelletti, F. O., ... & Calviello, G. (2003). Mechanism of activation of caspase cascade during β-carotene-induced apoptosis in human tumor cells. Nutrition and cancer, 47(1), 76-87.
[45] Omaye, S. T., Krinsky, N. I., Kagan, V. E., Mayne, S. T., Liebler, D. C., & Bidlack, W. R. (1997). β-Carotene: friend or foe? Toxicological Sciences, 40(2), 163-174.
[46] Chew, B. P., & Park, J. S. (2004). Carotenoid action on the immune response. The Journal of nutrition, 134(1), 257S-261S.
[47] Akram, S., Mushtaq, M., & Waheed, A. (2021). β-Carotene: beyond provitamin A. In A Centum of Valuable Plant Bioactives (pp. 1-31). Academic Press.
[48] Mahesh, S. K., Fathima, J., & Veena, V. G. (2019). Cosmetic potential of natural products: industrial applications. In Natural Bio-active compounds (pp. 215-250). Springer, Singapore.
[49] Chattopadhyay, P., Chatterjee, S., & Sen, S. K. (2008). Biotechnological potential of natural food grade biocolorants. African Journal of Biotechnology, 7(17).
[50] Jannel, S., Caro, Y., Bermudes, M., & Petit, T. (2020). Novel insights into the biotechnological production of Haematococcus pluvialis-derived astaxanthin: Advances and key challenges to allow its industrial use as novel food ingredient. Journal of Marine Science and Engineering, 8(10), 789.