References
[1] M. Juma, Z. Korenˇova´, J. Markosˇ L J and M B. Experimental study of pyrolysis and combustion of scrap tire [J/OL]. Polymers for Advanced Technologies, 2006, 18(November): 144-148. https://doi.org/10.1002/pat.
[2] Jahirul, M.I., Hossain, F.M., Rasul, M.G., Chowdhury A A. A Review on the Thermochemical Recycling of Waste Tyres to Oil for Automobile Engine Application [J]. Energies, 2021, 14: 3837.
[3] Alkhatib R. Development of an alternative fuel from waste of used tires by pyrolysis [D/OL]//Ecole des Mines de Nantes. École des Mines de Nantes, Nantes, France, 2015. https://tel.archives-ouvertes.fr/tel-01186556.
[4] Rácz, L., Solti, S., Gresits, I., Tölgyesi, S., Benedek, D., Valentínyi, N., & Mizsey P. Measurement of Rarely Investigated Trace Elements As, P, Sr, Zr, Rb and Y in Waste Tires [J]. Periodica Polytechnica Chemical Engineering, 2015, 60: 78-84.
[5] De Marco Rodriguez I, Laresgoiti M F, Cabrero M A, et al. Pyrolysis of scrap tyres [J/OL]. Fuel Processing Technology, 2001, 72(1): 9-22. https://doi.org/10.1016/S0378-3820(01)00174-6.
[6] Nkosi N, Muzenda E. A review and discussion of waste tyre pyrolysis and derived products [J]. Proceedings of the world congress on engineering, 2014, 2: 979-985.
[7] Mahlangu M L. Waste tyre management problems in South Africa and the possible opportunities that can be created through the recycling thereof [D]. University of South Africa, 2009.
[8] Cunliffe A M, Williams P T. Composition of oils derived from the batch pyrolysis of tyres [J/OL]. Journal of Analytical and Applied Pyrolysis, 1998, 44(2): 131-152. https://doi.org/10.1016/S0165-2370(97)00085-5.
[9] Ucar S, Karagoz S, Ozkan A R, et al. Evaluation of two different scrap tires as hydrocarbon source by pyrolysis [J/OL]. Fuel, 2005, 84(14-15): 1884-1892. https://doi.org/10.1016/J.FUEL.2005.04.002.
[10] Seidelt S, Müller-Hagedorn M, Bockhorn H. Description of tire pyrolysis by thermal degradation behaviour of main components [J/OL]. Journal of Analytical and Applied Pyrolysis, 2006, 75(1): 11-18. https://doi.org/10.1016/J.JAAP.2005.03.002.
[11] Qu B, Li A, Qu Y, et al. Kinetic analysis of waste tire pyrolysis with metal oxide and zeolitic catalysts [J/OL]. Journal of Analytical and Applied Pyrolysis, 2020, 152: 104949. https://doi.org/10.1016/J.JAAP.2020.104949.
[12] Labaki M, Jeguirim M. Thermochemical conversion of waste tyres—a review [J/OL]. Environmental Science and Pollution Research, 2017, 24(11): 9962-9992. https://doi.org/10.1007/s11356-016-7780-0.
[13] Mia M, Islam A, Islam Rubel R, et al. Fractional Distillation & Characterization of Tire Derived Pyrolysis Oil [J/OL]. International Journal of Engineering Technologies IJET, 2017, 3(1): 1-10. https://doi.org/10.19072/ijet.280568.
[14] Aylón E, Fernández-Colino A, Murillo R, et al. Valorisation of waste tyre by pyrolysis in a moving bed reactor [J/OL]. Waste Management, 2010, 30(7): 1220-1224. https://doi.org/10.1016/J.WASMAN.2009.10.001.
[15] Murillo R, Aylón E, Navarro M V., et al. The application of thermal processes to valorise waste tyre [J/OL]. Fuel Processing Technology, 2006, 87(2): 143-147. https://doi.org/10.1016/J.FUPROC.2005.07.005.
[16] Aylón E, Callén M S, López J M, et al. Assessment of tire devolatilization kinetics [J/OL]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1-2): 259-264. https://doi.org/10.1016/J.JAAP.2004.09.006.
[17] Jefrey Pilusa E M. Qualitative Analysis of Waste Rubber-Derived Oil as an Alternative Diesel Additive [C/OL]//In Proceedings of the international conference on chemical and environmental engineering (ICCEE’2013). Johannesburg, South Africa, 2013: 15-16. https://www.researchgate.net/profile/Tsietsi_Pilusa2/publication/269670269_Qualitative_Analysis_of_Waste_Rubber-Derived_Oil_as_an_Alternative_Diesel_Additive/links/549146a90cf2d1800d87d6d2.pdf.
[18] Čepić Z, Mihajlović V, Đurić S, et al. Experimental analysis of temperature influence on waste tire pyrolysis [J/OL]. Energies, 2021, 14(17). https://doi.org/10.3390/en14175403.
[19] López F A, Centeno T A, Alguacil F J, et al. Distillation of granulated scrap tires in a pilot plant [J/OL]. Journal of Hazardous Materials, 2011, 190(1-3): 285-292. https://doi.org/10.1016/J.JHAZMAT.2011.03.039.
[20] Kumar Singh R, Ruj B, Jana A, et al. Pyrolysis of three different categories of automotive tyre wastes: Product yield analysis and characterization [J/OL]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 379-389.
https://doi.org/10.1016/J.JAAP.2018.08.011.
[21] Osayi J I, Iyuke S, Ogbeide S E. Biocrude Production through Pyrolysis of Used Tyres [J/OL]. Journal of Catalysts, 2014, 2014: 1-9. https://doi.org/10.1155/2014/386371.
[22] Rofiqul Islam M, Haniu H, Rafiqul Alam Beg M. Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties [J/OL]. Fuel, 2008, 87(13-14): 3112-3122.
https://doi.org/10.1016/J.FUEL.2008.04.036.
[23] Liu L, Cai G, Zhang J, et al. Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review [J/OL]. Renewable and Sustainable Energy Reviews, 2020, 126: 1-21. https://doi.org/10.1016/j.rser.2020.109831.
[24] Ramirez-Canon A, Muñoz-Camelo Y F, Singh P. Decomposition of used tyre rubber by pyrolysis: Enhancement of the physical properties of the liquid fraction using a hydrogen stream [J/OL]. Environments - MDPI, 2018, 5(6): 1-12.
https://doi.org/10.3390/environments5060072.
[25] Kar Y. Catalytic pyrolysis of car tire waste using expanded perlite [J/OL]. Waste Management, 2011, 31(8): 1772-1782. https://doi.org/10.1016/J.WASMAN.2011.04.005.
[26] Murugan S, Ramaswamy M C, Nagarajan G. The use of tyre pyrolysis oil in diesel engines [J/OL]. Waste Management, 2008, 28(12): 2743-2749. https://doi.org/10.1016/J.WASMAN.2008.03.007.
[27] Parthasarathy P, Choi H S, Park H C, et al. Influence of process conditions on product yield of waste tyre pyrolysis- A review [J/OL]. Korean Journal of Chemical Engineering, 2016, 33(8): 2268-2286. https://doi.org/10.1007/s11814-016-0126-2.
[28] Xu J, Yu J, He W, et al. Recovery of carbon black from waste tire in continuous commercial rotary kiln pyrolysis reactor [J/OL]. Science of The Total Environment, 2021, 772: 145507. https://doi.org/10.1016/J.SCITOTENV.2021.145507.
[29] Rowhani A . R. Scrap Tyre Management Pathways and Their Use as a Fuel—A Review [J]. Energies, 2016, 9: 888.
[30] Betancur M, Martínez J D, Murillo R. Production of activated carbon by waste tire thermochemical degradation with CO2 [J/OL]. Journal of Hazardous Materials, 2009, 168(2-3): 882-887. https://doi.org/10.1016/J.JHAZMAT.2009.02.167.
[31] Díez C, Martínez O, Calvo L F, et al. Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered [J/OL]. Waste Management, 2004, 24(5): 463-469.
https://doi.org/10.1016/J.WASMAN.2003.11.006.
[32] Williams P T. Pyrolysis of waste tyres: A review [J/OL]. Waste Management, 2013, 33(8): 1714-1728.
https://doi.org/10.1016/j.wasman.2013.05.003.
[33] Ogedengbe T I, Oroye O, Akinola A O. Modelling the products’ yield of used tyre pyrolyzed in fixed bed reactor [J]. Leonardo Electronic Journal of Practices and Technologies, 2018(32): 103-118.
[34] Torretta V, Rada E C, Ragazzi M, et al. Treatment and disposal of tyres: Two EU approaches. A review [J/OL]. Waste Man-agement, 2015, 45: 152-160. https://doi.org/10.1016/J.WASMAN.2015.04.018.