References
[1] W. E. Thirring, A soluble relativistic fifield theory, Annals of Physics, (1), (1997), 91-112.
[2] S. Selberg and A. Tesfahun, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differential Integral Equations, 23, 3-4(2010), 265-278.
[3] V. Delgado, Global solutions of the Cauchy problem for the (classical) coupled Maxwell Dirac and other nonlinear Dirac equations in one space dimension [J]. Proc. Amer. Math. Soc. , 69(1978), 289-296.
[4] M. Escobedo and L. Vega, A semilinear Dirac equation in Hs (R3) for s > 1, SIAM J. Math. Anal. , 28(1997), 338- 362.
[5] S. Machihara, Dirac equation with certain quadratic nonlinearities in one space dimension, Commun. Contemp. Math. , 9(3), (2007), 421-435.
[6] H. Pecher, Local well-posedness for the nonlinear Dirac equation in two space dimensions, Commun. Pure Appl. Anal. , 13(2), (2014), 673-685.
[7] L. Gross, The Cauchy problem for the coupled Maxwell and Dirac equations, Commun. Pure Appl. Math. 19(1966), 1-5.
[8] T. Kato, Integration of the equation of evolution in a Banach space, J. AZ and z. Sot. Japan, 5(1953), 208-234.
[9] I. E. Segal, Non- linear semi-groups, Ann. Math., 78(1963), 339-364.
[10] J. M. Chadam, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space dimension, J. Funct. Anal, 13(2), (1973), 173-184.
[11] J. M. Chadam, On the Cauchy problem for the coupled Maxwell-Dirac equations, J. Math. Phys., 13(1972), 597-604.
[12] Y. Choquet-Bruhat, Solutions globales des equations de Maxwell-Dirac-Klein- Gordon (masses nuUes), C.R. Acad. Sci. Paris 292, Ser. I, (1981), 153-158.
[13] M. Flato and G. Pinczon, J. Simon, Non- linear representations of Lie groups, Ann. Sci. Ec. Norm. Super. , 10(1977), 405-448.
[14] J. L. Bona, S. M. Sun, B.-Y. Zhang. Forced Oscillations of A Damped Korteweg-de Vries Equations in A Quarter Plane. Comm. Cont. Math. , 5(3): 369C400, 2003.
[15] J. L. Bona, S. M. Sun, B- Y. Zhang. Boundary Smoothing Properties of the Korteweg-de Vries Equation in A Quarter Plane and Applications, Dyn. PDE, 3: 1C69, 2006.
[16] J. Holmer. The Initial-Boundary Value Problem for the Korteweg-de Vries Equation. Comm. Par. Differ. Equa. , 31(8): 1151-1190, 2006.
[17] I. P. Naumkin, Initial-boundary value problem for the one dimensional Thirring model, J. Differ. Equa, 261(8), (2016), 4486-4523.
[18] I.P. Naumkin, Cubic nonlinear Dirac equation in a quarter plane, J. Math. Anal. Appl. 434(2), (2016), 1633-1664.
[19] Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal. , 38(4), (2006), 1060-1074.
[20] T. Kato, On nonlinear Schr¨odinger equations II. Hs-solutions and unconditional wellposedness, J. Anal. Math. , 67(1995), 281-306.