References
Afrianto, M. A., & Wasesa, M. (2022). The impact of tree-based machine learning models, length of training data, and quarantine search query on tourist arrival prediction’s accuracy under COVID-19 in Indonesia. Current Issues in Tourism, 1-17.
Bangwayo-Skeete, P. F., & Skeete, R. W. (2015). Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach. Tourism Management, 46, 454-464.
Blunk, S. S., Clark, D. E., & McGibany, J. M. (2006). Evaluating the long-run impacts of the 9/11 terrorist attacks on US domestic airline travel. Applied Economics, 38(4), 363-370.
Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis forecasting and control. Chapman-Hall /crc Boca Raton, 2(3), 131-133.
Feng, Y., Li, G., Sun, X., & Li, J. (2019). Forecasting the number of inbound tourists with Google Trends. Procedia Computer Science, 162, 628-633.
Goh, C., Law, R., & Mok, H. M. (2008). Analyzing and forecasting tourism demand: A rough sets approach. Journal of Travel Research, 46(3), 327-338.
Guizzardi, A., & Stacchini, A. (2015). Real-time forecasting regional tourism with business sentiment surveys. Tourism Management, 47, 213-223.
Hong, W. C., Dong, Y., Chen, L. Y., & Wei, S. Y. (2011). SVR with hybrid chaotic genetic algorithms for tourism demand forecasting. Applied Soft Computing, 11(2), 1881-1890.
Hu, M., Li, H., Song, H., Li, X., & Law, R. (2022). Tourism demand forecasting using tourist-generated online review data. Tourism Management, 90, 104490.
Hu, Y. C., & Wu, G. (2022). The impact of Google Trends index and encompassing tests on forecast combinations in tourism. Tourism Review, (ahead-of-print).
Law, R., & Au, N. (1999). A neural network model to forecast Japanese demand for travel to Hong Kong. Tourism Management, 20(1), 89-97.
Li, S., Chen, T., Wang, L., & Ming, C. (2018). Effective tourist volume forecasting supported by PCA and improved BPNN using Baidu index. Tourism Management, 68, 116-126.
Li, X., Pan, B., Law, R., & Huang, X. (2017). Forecasting tourism demand with composite search index. Tourism management, 59, 57-66.
Li, X., Shang, W., Wang, S., & Ma, J. (2015). A MIDAS modelling framework for Chinese inflation index forecast incorporating google search data. Electronic Commerce Research and Applications, 14(2), 112-125.
Morley, C. L. (1992). A microeconomic theory of international tourism demand. Annals of Tourism Research, 19(2), 250-267.
Nadal, J. R., Font, A. R., &Rosselló, A. S. (2004). The economic determinants of seasonal patterns. Annals of Tourism Research, 31(3), 697-711.
Önder, I. (2017). Forecasting tourism demand with Google trends: Accuracy comparison of countries versus cities. International Journal of Tourism Research, 19(6), 648-660.
Önder, I., & Gunter, U. (2016). Forecasting tourism demand with Google Trends for a major European city. Tourism Analysis, 21(2/3), 203-220.
Pan, B., Litvin, S. W., & Goldman, H. (2006, June). Real users, real trips, and real queries: An analysis of destination search on a search engine. In Annual Conference of Travel and Tourism Research Association (TTRA 2006). Irel-and, Dublin (pp. 16-18).
Pan, B., Wu, D. C., & Song, H. (2012). Forecasting hotel room demand using search engine data. Journal of Hospitality and Tourism Technology.
Park, S., Lee, J., & Song, W. (2017). Short-term forecasting of Japanese tourist inflow to South Korea using Google trends data. Journal of Travel & Tourism Marketing, 34(3), 357-368.
Shen, S., Li, G., & Song, H. (2011). Combination forecasts of international tourism demand. Annals of Tourism Research, 38(1), 72-89.
Song H & Li G. (2008). Tourism demand modelling and forecasting—a review of recent research. Tourism Management 29(2): 203-220.
Song, H., & Witt, S. F. (2006). Forecasting international tourist flows to Macau. Tourism Management, 27, 214-224.
Song, H., Qiu, R. T., & Park, J. (2019). A review of research on tourism demand forecasting: Launching the Annals of Tourism Research Curated Collection on tourism demand forecasting. Annals of Tourism Research, 75, 338-362.
Tang, L., Zhang, C., Li, T., & Li, L. (2021). A novel BEMD-based method for forecasting tourist volume with search engine data. Tourism Economics, 27(5), 1015-1038.
Tsui, W. H. K., Balli, H. O., Gilbey, A., & Gow, H. (2014). Forecasting of Hong Kong airport's passenger throughput. Tourism Management, 42, 62-76.
Wang, C. H. (2004). Predicting tourism demand using fuzzy time series and hybrid grey theory. Tourism management, 25(3), 367-374.
Wen, L., Liu, C., & Song, H. (2019). Forecasting tourism demand using search query data: A hybrid modelling approach. Tourism Economics, 25(3), 309-329.
Wen, L., Liu, C., Song, H., & Liu, H. (2021). Forecasting tourism demand with an improved mixed data sampling model. Journal of Travel Research, 60(2), 336-353.
Yang, X., Pan, B., Evans, J. A., & Lv, B. (2015). Forecasting Chinese tourist volume with search engine data. Tourism Management, 46, 386-387.
Yang, Y., Pan, B., & Song, H. (2014). Predicting hotel demand using destination marketing organization's web traffic data. Journal of Travel Research, 53(4), 433-447.
Zhang, B., Li, N., Law, R., & Liu, H. (2021). A hybrid MIDAS approach for forecasting hotel demand using large panels of search data. Tourism Economics, 13548166211015515.