References
[1] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80(1981), 545-550.
[2] A. Ben-Isreal and B. Mond, What is invexity? J. Austral. Math. Soc., Ser. B, 28(1), (1986), 1-9.
[3] S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189(1995), 901-908.
[4] M. A. Noor, Variational-like inequalities, Optimization, 30(1994), 323-330
[5] M. A. Noor and K. I. Noor, Higher order strongly exponentially preinvex functions, J. Appl. Math. Inform. 39(3-4) (2021), 469-485.
[6] G. Ruiz-Garzion, R. Osuna-Gomez and A. Rufian-Lizan, Generalized invex monotonicity, European J. Oper. Research, 144(2003), 501-512.
[7] T. Weir and B. Mond, Preinvex functions in multiobjective optimization, J. Math. Anal. Appl., 136(1988), 29-38.
[8] X. M. Yang, Q. Yang and K. L. Teo, Criteria for generalized invex monotonicities, European J. Oper. Research, 164(1), (2005), 115-119..
[9] J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20(1967), 493-512.
[10] R. Glowinski, J. J. Lions and R. Tremolieres, Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981.
[11] D. L. Zhu and P. Marcotte, Cocoercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim. 6(1996), 714-726.
[12] M. Patriksson, Nonlinear Programming and Variational Inequality Problems: A Unified Approach, Kluwer Academic Publishers, Dordrecht, 1998.
[13] G. Stampacchia, Formes bilineaires coercivites sur les ensembles convexes, C. R. Acad. Paris, 258(1964), 4413-4416.
[14] G. Alirezaei and R. Mazhar, On exponentially concave functions and their impact in information theory, J. Inform. Theory Appl. 9(5), (2018), 265-274.
[15] T. Antczak, On (p,r)-invex sets and functions, J. Math. Anal. Appl. 263(2001), 355-379.
[16] M. Avriel, r-Convex functions. Math. Program., 2(1972), 309-323.
[17] N. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52(1929), 1-66.
[18] J. Pecaric and J. Jaksetic, On exponential convexity, Euler-Radau expansions and stolarsky means, Rad Hrvat. Matematicke Znanosti, 17(515), (2013), 81-94.
[19] S. Pal and T. K. Wong, On exponentially concave functions and a new information geometry, Annals. Prob. 46(2), (2018), 1070-1113.
[20] Y. X. Zhao, S. Y. Wang and L. Coladas Uria, Characterizations of r-Convex Functions, J. Optim. Theory Appl. 145(2010), 186–195.
[21] R. W. Cottle, J. S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, New York, 1992.
[22] M. A. Noor and W. Oettli, On general nonlinear complementarity problems and quasi equilibria, Le Matemat. 49(1994), 313-331.
[23] G. Cristescu and L. Lupsa, Non Connected Convexities and Applications, Kluwer Academic Publisher, Dordrechet, 2002.