Rasaki Olawale Olanrewaju1,*, Sodiq Adejare Olanrewaju2, Oluwafemi Samson Balogun3, Wasiu Adesoji Adepoju4
1Business Analytics and Value Networks (BAVNs), Mohammed VI Polytechnic University (UM6P), Rabat, Morocco.
2Department of Statistics, University of Ibadan, Ibadan, Nigeria.
3School of Computing, University of Eastern, F1-70211, Kuopio Campus, Finland.
4Department of Mathematics Education, University of Ibadan, Ibadan, Nigeria.
*Corresponding author: Rasaki Olawale Olanrewaju
References
[1] Rihan, F.A.S. (2021). Delay Differential Equations, and Applications to Biology. Springer Nature, Singapore.
[2] Kermack, W.O. and McKendrick, A.G. (1991). Contribution to the Mathematical Theory of Epidemics—III: Further Studies of the Problem of Endemicity. Bulletin of Mathematical Biology, 53(2), 89-118. doi.10.1007/BF02464425.
[3] Barsnarkov, L. Tomovski, I.Sandev, T. and Kocarev, L. (2021). Non-Markovian SIR Epidemic Spreading Model. ar-Xiv:2107.07427.
[4] Kermack, W.O. and McKendrick, A.G. (1927). A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London A, 115, 700-721.
[5] Olanrewaju, R.O. (2018). Bayesian Approach: An Alternative to Periodogram and TimeAxes Estimation for known and unknown White Noise. International Journal of Mathematical Sciences and Computing, 2(5), 22-33. doi.10.5815/ijmsc.2018.02.03.
[6] Julie, C. B. and Lauren, M.C. (2018). An Introduction to Compartmental Modeling for the Budding Infectious Disease Modeler. Letters in Biomathematics, 5(1), 195-221. doi.org/10.1080/2373786.2018.1509026.
[7] Olanrewaju, R.O. Nafiu, L.A. Muse, A.H., and Barry, T.S. (2021). Stochastic Modelling of the Dynamics of the SARS-CoV-2 Epidemic: An Africa Perspective. American Journal of Mathematics and Statistics, 11(2), 41-48.
doi.10.5923/j.ajms.20211102.03.
[8] Liu, Y. Gayle, A.A. Wilder-Smith, A. and Rocklöv, J. (2020). The Reproductive Number of COVID-19 is Higher Compared to SARS Coronavirus, Journal of Travel Medicine, 27(2), doi.org/10.1093/jtm/taaa021.
[9] Bestehom, M. Michelitsch, T.M. Collet, B.A. Riascos, A.P. and Nowakowski, A. F. (2022). Simple Model of Epidemic Dynamics with Memory Effects. Phys. Rev. E 105, 024205.
[10] Olanrewaju, R.O. Barry, T.S. Muse, A.H. and Habineza, A. (2021). Ornstein-Uhlenbeck Processvia Conflated Drive of Brownian Motion and Lévy Process and its Application. Mathematical Theory and Modeling, 11(3), 12-20. www.iiste.orgISSN 2224-5804.
[11] Pereira, E.S. Galantini, J.A. and Duval, M.E. (2017). Use of a Three-Compartment Model to Evaluate the Dynamics of Cover Crop Residues. Archives of Agronomy and Soil Science, 1-7. http://dx.doi.org/10.1080/03650340.2017.1296137.
[12] Campbell, E.E. and Paustian, K. (2015). Current Developments in Soil Organic Matter Modeling and the Expansion of Model Applications: A Review. Environmental Research Letter, 10.
[13] Nakamura, G. Grammaticos, B. and Badoual, M. (2020). Confinement Strategies in a Simple SIR Model. Regular and Chaotic dynamics, 25, 509-521.
[14] Olanrewaju, R.O. (2018). On the Efficiency and Robustness of Commingle Wiener and Levy Driven Processes for Vasciek Model. World Academy of Science, engineering, and Technology (WASET): International Journal of Mathematics and Computational Sciences,12(11), 228-233. doi.org/10.5281/zendo.