References
[1] Serafini, F. and Peluso, I. (2016). Functional foods for health: the interrelated antioxidant and anti-inflammatory role of fruits, vegetables, herbs, spices and cocoa in humans. Current Pharmaceutical Design, 22:6701-6715.
[2] Wichansawakun, S. and Buttar, H.S. (2019). Antioxidant diets and functional foods promote healthy aging and longevity through diverse mechanisms of action. pp. 541-563. In: The role of functional food security in global health. Singh RB, Ross RW, Takahashi T (eds). Elsevier, Amst, Netherlands.
[3] Robles-Ramírez, M.C., Almazán-Rodríguez, R.L., and Mora-Escobedo, R. (2014). Nutraceutical potential of peanut seeds. pp. 93-114. In: Functional food components in seeds.Rosalva Mora Escobedo (ed). Nova Science Publishers Inc., NY, USA.
[4] Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., and Kalaicy, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organ Journal, 5:9-19.
[5] Cory, N., Passarelli, S., Szeto, J., Tamez, M., and Mattei J. (2018). The role of polyphenols in human health and food systems: A mini-review. Frontiers in Nutrition. 5:87. PMC6160559.
[6] Chukwumah, Y., Walker, L., Vogler, B., and Verghese, M. (2007). Changes in the phytochemical composition and profile of raw, boiled and roasted peanuts. Journal of Agricultural and Food Chemistry, 55:9266-9273.
[7] Kumar, R.R., Upadhyay, R., and Niwas, M.H. (2017). Optimization of microwave roasting of peanuts and evaluation of its physicochemical and sensory attributes. Journal of Food Science and Technology, 54, 2145-2155.
[8] Schirack, A.V., Drake, M., Sanders, T.H., and Sandeep, K.P. (2006). Impact of microwave blanching on the flavor of roasted peanuts. Journal of Sensory Studies, 21:428-440.
[9] Álvarez-Jubete, L., Wijngaard, H., Arendt, E.K., and Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119:770-778.
[10] Beltrán-Orozco, M.C., Martínez-Olguín, A., and Robles-Ramírez, M.C. (2020). Changes in the nutritional composition and antioxidant capacity of chia seeds (Salvia hispanica L.) during germination process. Food Science and Biotechnology, 29:751-757.
[11] Fernández-Orozco, R., Frias, J., Zielinski, H., Piskula, M.K., Koslowska, H., and Vidal-Valverde, C. (2008). Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. Emmerald, Glycine max cv. Jutro and Glycine max cv. Merit. Food Chemistry, 111:622-630.
[12] Yang, Q-Q., Cheng, L., Long, Z-Y., Li, H-B., Gunaratne, A., Gan, R-Y., Gan, R-Y., and Corke, H. (2019). Comparison of the phenolic profiles of soaked and germinated peanut cultivars via UPLC-QTOF-MS. Antioxidants, 8:1-12.
[13] Craft, B.D., Kosinska, A., Amarowicz, R., and Pegg, R.B. (2010). Antioxidant properties of extracts obtained from raw, dry-roasted and oil-roasted US peanuts of commercial importance. Plant Foods for Human Nutrition, 65:311-318.
[14] Rosales-Martínez, P., Arellano-Cárdenas, S., Dorantes-Álvarez, L., García-Ochoa, F., and López-Cortez, M. S. (2014). Comparison between antioxidant activities of phenolic extracts from Mexican peanuts, peanuts skins, nuts and pistachios. Journal of the Mexican Chemical Society, 58:185-193.
[15] Phan-Thien, K-Y., Wright, G.C., and Lee, N.A. (2014). Peanut antioxidants: Part 2. Quantitation of free and matrix-bound phytochemicals in five selected genotypes with diverse antioxidant capacity by high performance liquid chromatography (HPLC). LWT - Food Science and Technology, 57:312-319.
[16] Manach, C., Williamson, G., Morand, C., Scalbert, A., and Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition, 81:230S-242S.
[17] Win, M.M., Abdul-Hamid, A., Baharin, B.S., Anwar, F., and Saari, N. (2011). Effects of roasting on phenolics composition and antioxidant activity of peanut (Arachis hypogaea L.) kernel flour. European Food Research and Technology, 233:599-608.
[18] Gupta, C., Sharma, G., and Chan, D. (2014). Resveratrol: a chemo-preventive agent with diverse applications. Pp. 47-60. In Phytochemicals of Nutraceutical Importance. Prakash D and Sharma G (eds). CABI, Wallingford, Oxon, UK.
[19] Wang, K.H., Lai, Y.H, Chang, J.C., Ko, T.F., Shyu, S.L., and Chiou, R.Y.Y. (2005). Germination of Peanut Kernels to Enhance Resveratrol Biosynthesis and Prepare Sprouts as a Functional Vegetable. Journal of Agricultural and Food Chemistry, 53:242-246.
[20] Limmongkon, A., Janhom, P., Amthong, A., Kawpanuk, M., Nopprang, P., Poohadsuan, J., and Boonsong, T. (2017). Antioxi-dant activity, total phenolic, and resveratrol content in five cultivars of peanut sprouts. Asian Pacific Journal of Tropical Bio-medicine, 7: 332-338.
[21] Adhikari, B., Dhungana, S.K., Ali, M.W., Adhikari, A., Kim, I-D., and Shin, D-H. (2018). Reveratrol, total phenolic and fla-vonoid contents, and antioxidant potential of seeds and sprouts of Korean peanuts. Food Science and Biotechnology, 27:1275-1284.
[22] Kim, H-J., Park, K-J., and Lim, J-H. (2011). Metabolomic Analysis of phenolic compounds in buckwheat (Fagopyrum escu-lentum M.) sprouts treated with methyl jasmonate. Journal of Agricultural and Food Chemistry, 59:5707-5713.
[23] Ndakidemi, P.A. and Dakora, F.D. (2003). Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Functional Plant Biology, 30:729-745.
[24] Prakash, M., Basavaraj, B.V., and Chidambara, M.K.N. (2019). Biological functions of epicatechin: plant cell to human cell health. Journal of Functional Foods, 52:14-24.
[25] Schroeter, H., Heiss, C., Balzer, J., Kleinbongard, P., Keen, C.L., Hollenberg, N.K., Sies, H., Kwik-Uribe, C., Schmitz, H.H., and Kelm, M. (2006). (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. PNAS, 103:1024-1029.
[26] Nogueira, L., Ramírez-Sánchez, I, Perkins, G.A., Murphy, A., Taub, P.R., Ceballos, G., Villarreal, F.J., Hogan, M.C., and Malek, M.H. (2011). (−)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle. The Journal of Physiology, 589 (Pt 18):4615-4631.
[27] Nichols, M., Zhang, J., Polster, B.M., Elustondo, P.A., Thirumaran, A., Pavlov, E.V., and Robertson, G.S. (2015). Synergistic neuroprotection by epicatechin and quercetin. Activation of convergent mitochondrial signaling pathway. Neuroscience, 308:75-94.
[28] Kahkeshani, N., Farzaei, F., Fotouhi, M., Shaghayegh, A.S., Bahramsoltani, R., Naseri, R., Momtaz, S., Abbasabadi, Z., Rahimi, R., Hosein, F.M., and Bishayee, A. (2019). Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian Journal of Basic Medical Sciences, 22:225-237.