magazinelogo

International Journal of Food Science and Agriculture

ISSN Online: 2578-3475 Downloads: 232897 Total View: 3089009
Frequency: quarterly ISSN Print: 2578-3467 CODEN: IJFSJ3
Email: ijfsa@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/ijfsa.2023.09.002

Effect of Processing on Specific Phenolic Compounds of Two Market Peanuts Grown in Mexico: Possible Health Implications

María del Carmen Robles-Ramírez1,*, Roberto Carlos Viramontes-Bocanegra1, Rosalva Mora-Escobedo1, Fortunata Santoyo-Tepole1, Emmanuel D. Ortega-Robles2

1Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Calle Wilfrido Massieu esquina Manuel Stampa. C.P. 07738, Ciudad de México, México.

2Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Tlalpan 4800, C.P. 14080, Ciudad de México, México.

*Corresponding author: María del Carmen Robles-Ramírez

Published: September 26,2023

Abstract

Peanut (Arachis hypogaea L.) is a legume of high consumption worldwide. It is rich in protein and healthy fatty acids, but it also contains a series of health-promoting phytochemicals, highlighting the phenolic compounds. Peanuts are not eaten raw, but first go through different treatments. This research provides information on how treatments such as roasting, frying, microwaving and germination affect the phenolic profile of peanuts and, consequently, their nutraceutical potential. In general, the treatments increased the content of gallic acid by 12-190%, p-coumaric acid (53-197%), rutin (33-46%), catechin (11-301%), and epicatechin (147-841%) in Virginia variety; while in the Valencia variety increases in p-coumaric acid between 70-244%, rutin (17-68%), catechin (68-361%), and epicatechin (21-327%) were observed. Ferulic and caffeic acids were not detected. There was no effect of any of the treatments on quercetin content. Germination was the best method to increase these nutraceutical compounds. This method also induced the synthesis of resveratrol at levels higher than grapes and wine.

References

[1] Serafini, F. and Peluso, I. (2016). Functional foods for health: the interrelated antioxidant and anti-inflammatory role of fruits, vegetables, herbs, spices and cocoa in humans. Current Pharmaceutical Design, 22:6701-6715.

[2] Wichansawakun, S. and Buttar, H.S. (2019). Antioxidant diets and functional foods promote healthy aging and longevity through diverse mechanisms of action. pp. 541-563. In: The role of functional food security in global health. Singh RB, Ross RW, Takahashi T (eds). Elsevier, Amst, Netherlands. 

[3] Robles-Ramírez, M.C., Almazán-Rodríguez, R.L., and Mora-Escobedo, R. (2014). Nutraceutical potential of peanut seeds. pp. 93-114. In: Functional food components in seeds.Rosalva Mora Escobedo (ed). Nova Science Publishers Inc., NY, USA.

[4] Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., and Kalaicy, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organ Journal, 5:9-19. 

[5] Cory, N., Passarelli, S., Szeto, J., Tamez, M., and Mattei J. (2018). The role of polyphenols in human health and food systems: A mini-review. Frontiers in Nutrition. 5:87. PMC6160559. 

[6] Chukwumah, Y., Walker, L., Vogler, B., and Verghese, M. (2007). Changes in the phytochemical composition and profile of raw, boiled and roasted peanuts. Journal of Agricultural and Food Chemistry, 55:9266-9273. 

[7] Kumar, R.R., Upadhyay, R., and Niwas, M.H. (2017). Optimization of microwave roasting of peanuts and evaluation of its physicochemical and sensory attributes. Journal of Food Science and Technology, 54, 2145-2155.

[8] Schirack, A.V., Drake, M., Sanders, T.H., and Sandeep, K.P. (2006). Impact of microwave blanching on the flavor of roasted peanuts. Journal of Sensory Studies, 21:428-440.

[9] Álvarez-Jubete, L., Wijngaard, H., Arendt, E.K., and Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa, buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119:770-778. 

[10] Beltrán-Orozco, M.C., Martínez-Olguín, A., and Robles-Ramírez, M.C. (2020). Changes in the nutritional composition and antioxidant capacity of chia seeds (Salvia hispanica L.) during germination process. Food Science and Biotechnology, 29:751-757. 

[11] Fernández-Orozco, R., Frias, J., Zielinski, H., Piskula, M.K., Koslowska, H., and Vidal-Valverde, C. (2008). Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. Emmerald, Glycine max cv. Jutro and Glycine max cv. Merit. Food Chemistry, 111:622-630. 

[12] Yang, Q-Q., Cheng, L., Long, Z-Y., Li, H-B., Gunaratne, A., Gan, R-Y., Gan, R-Y., and Corke, H. (2019). Comparison of the phenolic profiles of soaked and germinated peanut cultivars via UPLC-QTOF-MS. Antioxidants, 8:1-12. 

[13] Craft, B.D., Kosinska, A., Amarowicz, R., and Pegg, R.B. (2010). Antioxidant properties of extracts obtained from raw, dry-roasted and oil-roasted US peanuts of commercial importance. Plant Foods for Human Nutrition, 65:311-318. 

[14] Rosales-Martínez, P., Arellano-Cárdenas, S., Dorantes-Álvarez, L., García-Ochoa, F., and López-Cortez, M. S. (2014). Comparison between antioxidant activities of phenolic extracts from Mexican peanuts, peanuts skins, nuts and pistachios. Journal of the Mexican Chemical Society, 58:185-193.

[15] Phan-Thien, K-Y., Wright, G.C., and Lee, N.A. (2014). Peanut antioxidants: Part 2. Quantitation of free and matrix-bound phytochemicals in five selected genotypes with diverse antioxidant capacity by high performance liquid chromatography (HPLC). LWT - Food Science and Technology, 57:312-319.

[16] Manach, C., Williamson, G., Morand, C., Scalbert, A., and Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition, 81:230S-242S. 

[17] Win, M.M., Abdul-Hamid, A., Baharin, B.S., Anwar, F., and Saari, N. (2011). Effects of roasting on phenolics composition and antioxidant activity of peanut (Arachis hypogaea L.) kernel flour. European Food Research and Technology, 233:599-608. 

[18] Gupta, C., Sharma, G., and Chan, D. (2014). Resveratrol: a chemo-preventive agent with diverse applications. Pp. 47-60. In Phytochemicals of Nutraceutical Importance. Prakash D and Sharma G (eds). CABI, Wallingford, Oxon, UK. 

[19] Wang, K.H., Lai, Y.H, Chang, J.C., Ko, T.F., Shyu, S.L., and Chiou, R.Y.Y. (2005). Germination of Peanut Kernels to Enhance Resveratrol Biosynthesis and Prepare Sprouts as a Functional Vegetable. Journal of Agricultural and Food Chemistry, 53:242-246. 

[20] Limmongkon, A., Janhom, P., Amthong, A., Kawpanuk, M., Nopprang, P., Poohadsuan, J., and Boonsong, T. (2017). Antioxi-dant activity, total phenolic, and resveratrol content in five cultivars of peanut sprouts. Asian Pacific Journal of Tropical Bio-medicine, 7: 332-338.

[21] Adhikari, B., Dhungana, S.K., Ali, M.W., Adhikari, A., Kim, I-D., and Shin, D-H. (2018). Reveratrol, total phenolic and fla-vonoid contents, and antioxidant potential of seeds and sprouts of Korean peanuts. Food Science and Biotechnology, 27:1275-1284. 

[22] Kim, H-J., Park, K-J., and Lim, J-H. (2011). Metabolomic Analysis of phenolic compounds in buckwheat (Fagopyrum escu-lentum M.) sprouts treated with methyl jasmonate. Journal of Agricultural and Food Chemistry, 59:5707-5713. 

[23] Ndakidemi, P.A. and Dakora, F.D. (2003). Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Functional Plant Biology, 30:729-745. 

[24] Prakash, M., Basavaraj, B.V., and Chidambara, M.K.N. (2019). Biological functions of epicatechin: plant cell to human cell health. Journal of Functional Foods, 52:14-24. 

[25] Schroeter, H., Heiss, C., Balzer, J., Kleinbongard, P., Keen, C.L., Hollenberg, N.K., Sies, H., Kwik-Uribe, C., Schmitz, H.H., and Kelm, M. (2006). (−)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. PNAS, 103:1024-1029. 

[26] Nogueira, L., Ramírez-Sánchez, I, Perkins, G.A., Murphy, A., Taub, P.R., Ceballos, G., Villarreal, F.J., Hogan, M.C., and Malek, M.H. (2011). (−)-Epicatechin enhances fatigue resistance and oxidative capacity in mouse muscle. The Journal of Physiology, 589 (Pt 18):4615-4631. 

[27] Nichols, M., Zhang, J., Polster, B.M., Elustondo, P.A., Thirumaran, A., Pavlov, E.V., and Robertson, G.S. (2015). Synergistic neuroprotection by epicatechin and quercetin. Activation of convergent mitochondrial signaling pathway. Neuroscience, 308:75-94. 

[28] Kahkeshani, N., Farzaei, F., Fotouhi, M., Shaghayegh, A.S., Bahramsoltani, R., Naseri, R., Momtaz, S., Abbasabadi, Z., Rahimi, R., Hosein, F.M., and Bishayee, A. (2019). Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian Journal of Basic Medical Sciences, 22:225-237.

How to cite this paper

Effect of Processing on Specific Phenolic Compounds of Two Market Peanuts Grown in Mexico: Possible Health Implications

How to cite this paper: María del Carmen Robles-Ramírez, Roberto Carlos Viramontes-Bocanegra, Rosalva Mora-Escobedo, Fortunata Santoyo-Tepole, Emmanuel D. Ortega-Robles. (2023) Effect of Processing on Specific Phenolic Compounds of Two Market Peanuts Grown in Mexico: Possible Health Implications. International Journal of Food Science and Agriculture7(3), 340-345.

DOI: http://dx.doi.org/10.26855/ijfsa.2023.09.002