References
[1] E. Fabbri, D. Pergolesi, and E. Traversa. “Materials challenges toward proton-conducting oxide fuel cells: a critical review.” Chem. Soc. Rev., vol. 39, no. 11, p. 4355, 2010, doi: 10.1039/b902343g.
[2] C. Duan, et al. “Readily processed protonic ceramic fuel cells with high performance at low temperatures.” Sci., vol. 349, no. 6254, pp. 1321–1326, Sep. 2015, doi: 10.1126/science.aab3987.
[3] E. C. C. de Souza and R. Muccillo. “Properties and applications of perovskite proton conductors.” Mater. Res., vol. 13, no. 3, pp. 385–394, Sep. 2010, doi: 10.1590/S1516-14392010000300018.
[4] R. Haugsrud and T. Norby. “Proton conduction in rare-earth ortho-niobates and ortho-tantalates.” Nat. Mater., vol. 5, no. 3, pp. 193–196, Mar. 2006, doi: 10.1038/nmat1591.
[5] R. N. Karnik. “Materials science: Breakthrough for protons.” Nature, vol. 516, no. 7530, pp. 173–175, Dec. 2014.
[6] P. Qiu, et al. “LaCrO 3 -Coated La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3−δ Core–Shell Structured Cathode with Enhanced Cr Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells.” ACS Appl. Mater. Interfaces, p. acsami.0c01962, Jun. 2020, doi: 10.1021/acsami.0c01962.
[7] S.-L. Zhang, et al. “Cobalt-substituted SrTi 0.3 Fe 0.7 O 3−δ : a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells.” Energy Environ. Sci., vol. 11, no. 7, pp. 1870–1879, 2018, doi: 10.1039/C8EE00449H.
[8] Z. Shi, W. Sun, and W. Liu, “Synthesis and characterization of BaZr0.3Ce0.5Y0.2−xYbxO3−δ proton conductor for solid oxide fuel cells.” J. Power Sources, vol. 245, pp. 953–957, Jan. 2014, doi: 10.1016/j.jpowsour.2013.07.060.
[9] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara. “Protonic conduction in Zr-substituted BaCeO3.” Solid State Ionics, vol. 138, no. 1–2, pp. 91–98, Dec. 2000, doi: 10.1016/S0167-2738(00)00777-3.
[10] A. K. Azad and J. T. S. Irvine. “High density and low temperature sintered proton conductor BaCe0.5Zr0.35Sc0.1Zn0.05O3-delta.” Solid State Ionics, vol. 179, no. 19–20, pp. 678–682, 2008, doi: DOI 10.1016/j.ssi.2008.04.036.
[11] R. Kannan, K. Singh, S. Gill, T. Fürstenhaupt, and V. Thangadurai. “Chemically stable proton conducting doped BaCeO₃ -no more fear to SOFC wastes.” Sci. Rep., vol. 3, p. 2138, 2013, doi: 10.1038/srep02138.
[12] H. Kawamori, I. Oikawa, and H. Takamura. “Protonation-Induced B -Site Deficiency in Perovskite-Type Oxides: Fully Hydrated BaSc 0.67 O(OH) 2 as a Proton Conductor.” Chem. Mater., vol. 33, no. 15, pp. 5935–5942, Aug. 2021, doi: 10.1021/acs.chemmater.1c01017.
[13] J. Lv, L. Wang, D. Lei, H. Guo, and R. V Kumar. “Sintering, chemical stability and electrical conductivity of the perovskite proton conductors BaCe0.45Zr0.45M0.1O3−δ (M = In, Y, Gd, Sm).” J. Alloys Compd., vol. 467, no. 1–2, pp. 376–382, 2009, doi: http://dx.doi.org/10.1016/j.jallcom.2007.12.103.
[14] A. K. Azad and J. T. S. Irvine. “Synthesis, chemical stability and proton conductivity of the perovksites Ba(Ce,Zr)(1-x)Sc-x O3-delta.” Solid State Ionics, vol. 178, no. 7–10, pp. 635–640, 2007, doi: DOI 10.1016/j.ssi.2007.02.004.
[15] P. Sawant, S. Varma, B. N. Wani, and S. R. Bharadwaj. “Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as electrolyte for proton conducting SOFC.” Int. J. Hydrogen Energy, vol. 37, no. 4, pp. 3848–3856, 2012,
doi: 10.1016/j.ijhydene.2011.04.106.
[16] D. A. Stevenson, N. Jiang, R. M. Buchanan, and F. E. G. Henn. “Characterization of Gd, Yb and Nd doped barium cerates as proton conductors.” Solid State Ionics, vol. 62, no. 3–4, pp. 279–285, 1993, doi: http://dx.doi.org/10.1016/0167-2738(93)90383-E.
[17] A. K. Azad, A. Kruth, and J. T. S. Irvine. “Influence of atmosphere on redox structure of BaCe0.9Y0.1O2.95 – Insight from neutron diffraction study,” Int. J. Hydrogen Energy, vol. 39, no. 24, pp. 12804–12811, Aug. 2014,
doi: 10.1016/j.ijhydene.2014.05.080.
[18] A. K. Azad, D. D. Y. Setsoafia, L. C. Ming, and P. M. I. Petra. “Synthesis and characterization of high density and low temperature sintered proton conductor BaCe0.5Zr0.35In0.1Zn0.05O3-d.” Adv. Mater. Res., vol. 1098, pp. 104–109, 2015.
[19] P. Babilo and S. M. Haile. “Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO.” J. Am. Ceram. Soc., vol. 88, no. 9, pp. 2362–2368, 2005, doi: 10.1111/j.1551-2916.2005.00449.x.
[20] S. Tao and J. T. S. Irvine. “A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers.” Adv. Mater., vol. 18, no. 12, pp. 1581–1584, 2006.
[21] X. Lu, Y. Ding, and Y. Chen. “Ba0.5Sr0.5Zn0.2Fe0.8O3−δ–BaCe0.5Zr0.3Y0.16Zn0.04O3−δ composite cathode for proton-conducting solid oxide fuel cells.” J. Alloys Compd., vol. 484, no. 1–2, pp. 856–859, 2009, doi: 10.1016/j.jallcom.2009.05.065.
[22] S. Hossain, N. Radenahmad, J. H. Zaini, F. Begum, and A. K. Azad. “Structural, thermal and microstructural studies of the proton conductor BaCe 0.7 Zr 0.1 Y 0.05 Zn 0.15 O 3 for IT-SOFCs.” IOP Conf. Ser. Mater. Sci. Eng., vol. 121, p. 012014, Mar. 2016, doi: 10.1088/1757-899X/121/1/012014.
[23] N. Bonanos. “Oxide-based protonic conductors: point defects and transport properties.” Solid State Ionics, vol. 145, no. 1–4, pp. 265–274, 2001, doi: http://dx.doi.org/10.1016/S0167-2738(01)00951-1.
[24] R. Glöckner, M. S. Islam, and T. Norby. “Protons and other defects in BaCeO3: a computational study,” Solid State Ionics, vol. 122, no. 1–4, pp. 145–156, 1999, doi: http://dx.doi.org/10.1016/S0167-2738(99)00070-3.
[25] I. Ahmed, et al. “Location of deuteron sites in the proton conducting perovskite BaZr0.50In0.50O3−y.” J. Alloys Compd., vol. 450, no. 1–2, pp. 103–110, 2008, doi: http://dx.doi.org/10.1016/j.jallcom.2006.11.154.
[26] A. K. Azad and J. T. S. Irvine. “Location of Deuterium Positions in the Proton-Conducting Perovskite BaCe 0.4 Zr 0.4 Sc 0.2 O 2.90 · x D 2 O by Neutron Powder Diffraction.” Chem. Mater., vol. 21, no. 2, pp. 215–222, Jan. 2009, doi: 10.1021/cm8031847.
[27] M. Miyake, M. Iwami, M. Takeuchi, S. Nishimoto, and Y. Kameshima. “Electrochemical performance of Ni0.8Cu0.2 /Ce0.8Gd0.2O1.9 cermet anodes with functionally graded structures for intermediate-temperature solid oxide fuel cell fueled with syngas.” J. Power Sources, vol. 390, pp. 181–185, Jun. 2018, doi: 10.1016/j.jpowsour.2018.04.051.
[28] I. Ahmed, et al. “Crystal Structure and Proton Conductivity of BaZr0. 9Sc0. 1O3- δ.” J. Am. Ceram. Soc., vol. 91, no. 9, pp. 3039–3044, 2008.
[29] A. I. Klyndyuk, et al. “Double substituted NdBa(Fe,Co,Cu)2O5+δ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells – correlation between structure and electrochemical properties.” Electrochim. Acta, vol. 411, p. 140062, Apr. 2022, doi: 10.1016/j.electacta.2022.140062.
[30] S. Hossain, et al. “Preparation and Structural Properties of ZnAl x Fe 2 − x O 4 Spinel Oxide.” no. February, pp. 203–209, 2016.
[31] L. Zhang, Y. Wang, B. Liu, J. Wang, G. Han, and Y. Zhang. “Characterization and property of magnetic ferrite ceramics with interesting multilayer structure prepared by solid-state reaction.” Ceram. Int., vol. 47, no. 8, pp. 10927–10939, Apr. 2021,
doi: 10.1016/j.ceramint.2020.12.212.
[32] S. Hossain, M. K. Hasan, S. K. M. Yunus, A. K. M. Zakaria, T. K. Datta, and A. K. Azad. “Synthesis and Investigation of the Structural Properties of Al3+ Doped Mg Ferrites.” Appl. Mech. Mater., vol. 789–790, pp. 48–52, Sep. 2015,
doi: 10.4028/www.scientific.net/AMM.789-790.48.
[33] S. Khanam, et al. “Study of the Crystallographic and Magnetic Structure in the Nickel Substituted Cobalt Ferrites by Neutron Diffraction.” Mater. Sci. Appl., vol. 6, pp. 332–342, 2015, doi: 10.4236/msa.2015.64038.
[34] A. K. M. Zakaria, et al. “Cation distribution and crystallographic characterization of the spinel oxides MgCr x Fe 2Àx O 4 by neutron diffraction.” J. Alloys Compd., vol. 633, pp. 115–119, 2015, doi: 10.1016/j.jallcom.2015.01.179.
[35] P. E. Werner, L. Eriksson, and M. Westdahl. “TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries.” J. Appl. Crystallogr., vol. 18, no. 5, pp. 367–370, 1985, doi: 10.1107/S0021889885010512.
[36] J. Lougier and B. Bochu. (n.d.). “‘Checkcell: Graphical Powder Diffraction Indexing Cell and Space Group Assignment Soft-ware.’”
[37] J. Rodriguez-Carvajal. “Recent advances in magnetic structure determination by neutron powder diffraction + FullProf.” Phys. B Condens. Matter, vol. 192, no. 1–2, p. 55, 1993.