References
[1] Lan, H. & Pan, Y. (2019, June). A crowdsourcing quality prediction model based on random forests. In 2019 IEEE/ACIS 18th International Conference on Computer and Information Science (ICIS), (pp. 315-319). IEEE.
[2] Subramanian, R. R., Reddy, M. P., Kousik, K., Rupesh, S., Rohith, S., & Kumar, B. S. (2022, December). ClassHotel: Application of data analytic techniques for online hotel recommendation. In 2022 International Conference on Automation, Computing and Re-newable Systems (ICACRS), (pp. 1021-1026). IEEE.
[3] Gómez-Ramírez, J., Ávila-Villanueva, M., & Fernández-Blázquez, M. Á. (2020). Selecting the most important self-assessed features for predicting conversion to mild cognitive impairment with random forest and permutation-based methods. Scientific Re-ports, 10(1), 1-15.
[4] Thomas, E., Ferrer, A. G., Lardeux, B., Boudia, M., Haas-Frangii, C., & Agost, R. A. (2019). Cascaded machine learning model for efficient hotel recommendations from air travel bookings. In Proceedings of Proceedings of the 12th ACM Conference on Recommender Systems, ACM RecSys Workshop on Recommenders in Tourism (RecTour 2019 vol 2435). CEUR Workshop Proceedings Copenhagen (pp. 9-16).
[5] Dai, P., Chang, W., Xin, Z., Cheng, H., Ouyang, W., & Luo, A. (2021). A retrospective study on the influencing factors and prediction of hospitalization expenses for chronic renal failure in China based on random forest and LASSO regression. Frontiers in Public Health, 9, 678276.
[6] Lee, M., Kwon, W., & Back, K. J. (2021). Artificial intelligence for hospitality big data analytics: developing a prediction model of restaurant review helpfulness for customer decision-making. International Journal of Contemporary Hospitality Management, 33(6), 2117-2136.
[7] Tekin, A. T., & Cebi, F. (2020). Click and sales prediction for digital advertisements: Real world application for otas. In Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making: Proceedings of the INFUS 2019 Conference, Istanbul, Turkey, July 23-25, 2019 (pp. 205-212). Springer International Publishing.
[8] El Hamdaoui, H., Boujraf, S., El Houda Chaoui, N., Alami, B., & Maaroufi, M. (2021). Improving heart disease prediction using random forest and adaboost algorithms. International Journal of Online & Biomedical Engineering, 17(11).
[9] Wang, Y., Huang, C., Zhao, M., Hou, J., Zhang, Y., & Gu, J. (2020). Mapping the population density in mainland China using NPP/VIIRS and points-of-interest data based on a random forests model. Remote Sensing, 12(21), 3645.
[10] Abdulkareem, K. H., Mohammed, M. A., Salim, A., Arif, M., Geman, O., Gupta, D., & Khanna, A. (2021). Realizing an effective COVID-19 diagnosis system based on machine learning and IOT in smart hospital environment. IEEE Internet of Things Journal, 8(21), 15919-15928.
[11] Cakmak, T., Tekin, A., Senel, C., Coban, T., Uran, Z. E., & Sakar, C. O. (2019). Accurate prediction of advertisement clicks based on impression and click-through rate using extreme gradient boosting. In ICPRAM (pp. 621-629).
[12] Avdeef, A., & Kansy, M. (2022). Predicting solubility of newly approved drugs (2016–2020) with a simple ABSOLV and GSE (Flexible-Acceptor) consensus model outperforming random forest regression. Journal of Solution Chemistry, 51(9), 1020-1055.