OAJRC Material Science

Downloads: 2902 Total View: 43394
Frequency: Instant publication ISSN Online: 2632-2072 CODEN: OMSAAO
Email: oajrcms@hillpublish.com

Volumes & Issues

Current Issue

Article http://dx.doi.org/10.26855/oajrcms.2024.03.001

Optical Constants of Nanofilms for Spectrally Selective Windows

Winston T. Ireeta1, Edward Bwayo1,2,*, Daniel Mukiibi1, Denis Okello1, Willy Okullo1, Robert Lugolole1

1Department of Physics, School of Physical Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda.

2Department of Physics, Faculty of Science, Muni University, Arua, Uganda.

*Corresponding author:Edward Bwayo

Published: April 2,2024


In this work, a spectral analysis of the effect of deposition angle on the optical constants for optically selective windows was carried out. The coatings of ZnS/Ag nanostructures were deposited on glass substrates from 0o to 60o. The measured transmittance increased with an increase in the deposition angle of silver nanofilms in the visible region but decreased with an increase in the deposition of silver in the infrared region. The transmittance decreased with an increase in the deposition angle of zinc sulfide in the visible region. Still, it increased with an increase in the deposition angle of zinc sulfide in the infrared region. The reflectance decreased with an increase in the deposition angle of silver nanoparticles in the visible region but decreased with an increase in the deposition angle of zinc sulfide. The effective refractive index increased from 3.25 in the visible spectrum to 6.2 in the infrared spectrum. The low values of the effective refractive index at visible wavelengths imply that the nanofilms were transparent to visible light. The extinction coefficient increased from an average of 0.2 at a wavelength of 400nm toward the infrared spectral band. The increase in deposition of ZnS did not significantly affect the energy band gap. However, the increase in the deposition angle of silver increased the energy band of the nanofilms from 3.52 to 3.99 eV.


[1] Bwayo, E., & Obwoya, S. K. (2014). Coefficient of Thermal Diffusivity of Insulation Brick Developed from Sawdust and Clays. Journal of Ceramics, 2014, 1-6. https://doi.org/10.1155/2014/861726.

[2] Fang, B., YangC., Shen, W., Zhang, X., Zhang, Y., & Liu, X. (2017). Highly efficient omnidirectional structural color tuning method based on dielectric–metal–dielectric structure. Applied Optics, 56(4), 175-180.

[3] Multilayer, M. C., Nur-e-alam, M., Rahman, M., & Basher, M. K. (2020). Thin-Film Structures Prepared by RF.

[4] Chambouleyron, I., & Martinez, J. M. (2002). Optical properties of dielectric and semiconductor thin films. Handbook of Thin Films, 3, 593-622. https://doi.org/10.1016/b978-012512908-4/50048-5.

[5] Davalos, J. A. G., Carvano, J. M., & Blanco, J. (2017). Numerical determination of visible/NIR optical constants from laboratory spectra of HED meteorites. Icarus, 285, 275-290. https://doi.org/10.1016/j.icarus.2016.10.022.

[6] Sakkas, C., Rauch, J. Y., Cote, J. M., Tissot, V., Gavoille, J., & Martin, N. (2021). Tuning the optical properties of WO3 films exhibiting a zigzag columnar microstructure. Coatings, 11(4). https://doi.org/10.3390/coatings11040438.

[7] Włodarski, M., Chodorow, U., Jóźwiak, S., Putkonen, M., Durejko, T., Sajavaara, T., & Norek, M. (2019). Structural and optical char-acterization of ZnS ultrathin films prepared by low-temperature ALD from diethylzinc and 1.5-pentanedithiol after various annealing treatments. Materials, 12(19), 1-16. https://doi.org/10.3390/ma12193212.

[8] Peng, S., Yang, X., Yang, Y., Wang, S., Zhou, Y., Hu, J., Li, Q., & He, J. (2019). Direct Detection of Local Electric Polarization in the Interfacial Region in Ferroelectric Polymer Nanocomposites. Advanced Materials, 31(21), 1-9. 


[9] Sun, X., Hu, K., Tu, J., & Chen, K. (2021). Design and preparation of superhydrophobic, broadband and double-layer antireflective coat-ings. Surfaces and Interfaces, 24(March). https://doi.org/10.1016/j.surfin.2021.101135.

[10] Sharma, N., Sharma, S., Prabakar, K., Amirthapandian, S., Ilango, S., Dash, S., & Tyagi, A. K. (2015). C. Substrate temperature induced microstructural transition from amorphous at RT, nanocrystalline at 300. ArXiv.

[11] Charles, C., Martin, N., & Devel, M. (2015). Optical properties of nanostructured WO3 thin films by GLancing Angle Deposition: Comparison between experiment and simulation. Surface and Coatings Technology, 276, 136-140. 


[12] Dalapati, G. K., Kushwaha, A. K., Sharma, M., Suresh, V., Shannigrahi, S., Zhuk, S., & Masudy-Panah, S. (2018). Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance. Progress in Materials Science, 95, 42-131.

[13] Taylor, R. A., Hewakuruppu, Y., DeJarnette, D., & Otanicar, T. P. (2016). Comparison of selective transmitters for solar thermal applications. Applied Optics, 55(14), 3829. https://doi.org/10.1364/ao.55.003829.

[14] Baetens, R., Jelle, B. P., & Gustavsen, A. (2010). Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Solar Energy Materials and Solar Cells, 94(2), 87-105.

[15] Ding, G., & Clavero, C. (2017). Silver-Based Low-Emissivity Coating Technology for Energy-Saving Window Applications. Modern Technologies for Creating the Thin-Film Systems and Coatings. https://doi.org/10.5772/67085.

[16] Sharma, M., Sen, S., Gupta, J., Ghosh, M., Pitale, S., Gupta, V., & Gadkari, S. C. (2018). Tunable blue-green emission from ZnS(Ag) nanostructures grown by hydrothermal synthesis. Journal of Materials Research, 33(23), 3963-3970. 


[17] Sönmezolu, S., Arslan, A., Serin, T., & Serin, N. (2011). The effects of film thickness on the optical properties of TiO 2-SnO2 compound thin films. Physica Scripta, 84(6). https://doi.org/10.1088/0031-8949/84/06/065602.

[18] Ramzan, M., Rana, A. M., Ahmed, E., Bhatti, A. S., Hafeez, M., Ali, A., & Nadeem, M. Y. (2014). Optical description of HfO2/Al/HfO2 multilayer thin film devices. Current Applied Physics, 14(12), 1854-1860. https://doi.org/10.1016/j.cap.2014.10.023.

[19] Haus, J. W., Katte, N., Serushema, J.-B., & Scalora, M. (2010). Metallodielectrics as metamaterials. Active Photonic Materials III, 7756(September 2010), 77560F. https://doi.org/10.1117/12.862407.

[20] Huang, L., Wang, T., Li, X., Wang, X., Zhang, W., Yang, Y., & Tang, Y. (2020). UV-to-IR highly transparent ultrathin diamond nanofilms with intriguing performances: Anti-fogging, self-cleaning and self-lubricating. Applied Surface Science, 527, 146733.


[21] Khan, S. B., Wu, H., Ma, L., Hou, M., & Zhang, Z. (2017). HfO2 Nanorod Array as High-Performance and High-Temperature Antire-flective Coating. Advanced Materials Interfaces, 4(6), 1-9. https://doi.org/10.1002/admi.201600892.

[22] Bartek, N., Shvartsman, V. V., Lupascu, D. C., Prah, U., & Uršič, H. (2019). Influence of synthesis route on the properties of lead iron niobate. 2019 IEEE International Symposium on Applications of Ferroelectrics, ISAF 2019 - Proceedings, 1-4. 


[23] Bashir, K., Ali, A., Ashraf, M., Mehboob, N., & Zaman, A. (2021). Optical and structural properties of vacuum annealed multilayer nanostructured CdZnS thin films deposited by thermal evaporation. Optical Materials, 119(May), 111353. 


[24] Savaloni, H., & Savari, R. (2018). Nano-structural variations of ZnO:N thin films as a function of deposition angle and annealing condi-tions: XRD, AFM, FESEM and EDS analyses. In Materials Chemistry and Physics (Vol. 214). https://doi.org/10.1016/j.matchemphys.2018.04.099.

[25] Boubaia, A., Assali, A., Berrah, S., Bennacer, H., Zerifi, I., & Boukortt, A. (2021). Band gap and emission wavelength tuning of Srdoped BaTiO3 (BST) perovskites for high-efficiency visible-light emitters and solar cells. Materials Science in Semiconductor Processing, 130(November 2020), 105837. https://doi.org/10.1016/j.mssp.2021.105837.

[26] Rhodes, C., Cerruti, M., Efremenko, A., Losego, M., Aspnes, D. E., Maria, J. P., & Franzen, S. (2008). Dependence of plasmon polaritons on the thickness of indium tin oxide thin films. Journal of Applied Physics, 103(9). https://doi.org/10.1063/1.2908862.

[27] Chalana, S. R., Ganesan, V., & Mahadevan Pillai, V. P. (2015). Surface plasmon resonance in nanostructured Ag incorporated ZnS films. AIP Advances, 5(10), 107207.

[28] Blake, J. C., Rossi, S., Jonsson, M. P., & Dahlin, A. (2022). Scalable Reflective Plasmonic Structural Colors from Nanoparticles and Cavity Resonances – the Cyan-Magenta-Yellow Approach. Advanced Optical Materials, 10(13). 


[29] Vrakatseli, V. E., Kalarakis, A. N., Kalampounias, A. G., Amanatides, E. K., & Mataras, D. S. (2018). Glancing angle deposition effect on structure and light-induced wettability of RF-sputtered TiO2 thin films. Micromachines, 9(8). 


[30] Diab, M., & Alabbosh, O. (2018). Studying of Thickness Effects on the Optical and Structural Properties of ZnO / Ag / ZnO Multilayer Thin Films by Using Surface Plasmon Resonance. 70, 27-30.

[31] Chaffar Akkari, F., Ben Jbara, H., Abdelkader, D., Gallas, B., & Kanzari, M. (2018). Effect of angle deposition γ on the structural, optical and electrical properties of copper oxide zigzag (+γ, −γ) nanostructures elaborated by glancing angle deposition. Thin Solid Films, 657, 61-69. https://doi.org/10.1016/j.tsf.2018.05.006.

[32] Jones, A., Uggalla, L., Li, K., Fan, Y., Willow, A., Mills, C. A., & Copner, N. (2021). Continuous in-line chromium coating thickness measurement methodologies: An investigation of current and potential technology. Sensors, 21(10). https://doi.org/10.3390/s21103340.

[33] Studenikin, S. A., Golego, N., & Cocivera, M. (1998). Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution. Journal of Applied Physics, 83(4), 2104-2111. https://doi.org/10.1063/1.366944.

[34] Garlisi, C., Trepci, E., Li, X., Al Sakkaf, R., Al-Ali, K., Nogueira, R. P., Zheng, L., Azar, E., & Palmisano, G. (2020). Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energy-saving properties. Applied Energy, 264(February). https://doi.org/10.1016/j.apenergy.2020.114697.

[35] Bashir, K., Ali, A., Ashraf, M., Mehboob, N., & Zaman, A. (2021). Optical and structural properties of vacuum annealed multilayer nanostructured CdZnS thin films deposited by thermal evaporation. Optical Materials, 119(May). 


[36] He, C. Y., Gao, X. H., Yu, D. M., Guo, H. X., Zhao, S. S., & Liu, G. (2021). Highly Enhanced Thermal Robustness and Photothermal Conversion Efficiency of Solar-Selective Absorbers Enabled by High-Entropy Alloy Nitride MoTaTiCrN Nanofilms. ACS Applied Materials and Interfaces, 13(14), 16987-16996. https://doi.org/10.1021/acsami.0c23011.

[37] Zhao, Y., Xu, R., Zhang, X., Hu, X., Knize, R. J., & Lu, Y. (2013). Simulation of smart windows in the ZnO/VO2/ZnS sandwiched structure with improved thermochromic properties. Energy and Buildings, 66, 545-552. https://doi.org/10.1016/j.enbuild.2013.07.071.

[38] Cho, H., Yun, C., Park, J.-W., & Yoo, S. (2009). Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes. Organic Electronics, 10(6), 1163-1169.

[39] Osanyinlusi, O., Mukolu, A. I., & Zebaze Kana, M. G. (2016). Structural and optical properties of Al/ZnO thin films deposited by radio frequency sputtering. Materials Research Express, 3(9), 1-9. https://doi.org/10.1088/2053-1591/3/9/096401.

[40] Lou, R., Zhang, G., Li, G., Li, X., Liu, Q., & Cheng, G. (2020). Design and fabrication of dual-scale broadband antireflective structures on metal surfaces by using nanosecond and femtosecond lasers. Micromachines, 11(1). https://doi.org/10.3390/mi11010020.

[41] Włodarski, M., Chodorow, U., Jóźwiak, S., Putkonen, M., Durejko, T., Sajavaara, T., & Norek, M. (2019). Structural and Optical Characterization of ZnS Ultrathin Films Prepared by Low-Temperature ALD from Diethylzinc and 1.5-Pentanedithiol after Various Annealing Treatments. Materials, 12(19), 3212.

[42] Cho, K. H., Ahn, S. Il, Lee, S. M., Choi, C. S., & Choi, K. C. (2010). Surface plasmonic controllable enhanced emission from the intrachain and interchain excitons of a conjugated polymer. Applied Physics Letters, 97(19). https://doi.org/10.1063/1.3508949.

[43] Lee, G.-J., & Wu, J. J. (2017). Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—A review. Powder Technology, 318, 8-22.

[44] He, Y., Basnet, P., Murph, S. E. H., & Zhao, Y. (2013). Ag nanoparticle embedded TiO2 composite nanorod arrays fabricated by oblique angle deposition: Toward plasmonic photocatalysis. ACS Applied Materials and Interfaces, 5(22), 11818-11827.


[45] Al Garni, S. E., & Qasrawi, A. F. (2017). Effect of Indium nano-sandwiching on the structural and optical performance of ZnSe films. Results in Physics, 7, 4168-4173. https://doi.org/10.1016/j.rinp.2017.10.040.

[46] Multilayer, M. C., Nur-e-alam, M., Rahman, M., & Basher, M. K. (2020). Thin-Film Structures Prepared by RF.

[47] Vrakatseli, V. E., Kalarakis, A. N., Kalampounias, A. G., Amanatides, E. K., & Mataras, D. S. (2018). Glancing angle deposition effect on structure and light-induced wettability of RF-sputtered TiO2 thin films. Micromachines, 9(8), 389.

[48] Zhou, C., & Liu, H. (2017). A novel nanofibrous film chemosensor for highly selective and sensitive optical signaling of Zn2+. Journal of the Brazilian Chemical Society, 28(10), 1947-1952. https://doi.org/10.21577/0103-5053.20170036.

[49] Sönmezoǧlu, S., Termeli, T. A., Akin, S., & Askeroǧlu, I. (2013). Synthesis and characterization of tellurium-doped CdO nanoparticles thin films by sol-gel method. Journal of Sol-Gel Science and Technology, 67(1), 97-104. https://doi.org/10.1007/s10971-013-3054-1.

[50] Pan, Y., Fan, Y., & Niu, J. (2020). Optical properties of ultra-thin silver films deposited by thermal evaporation and its application in optical filters. Infrared Physics and Technology, 104, 103123. https://doi.org/10.1016/j.infrared.2019.103123.

[51] Granqvist, C. G., Arvizu, M. A., Bayrak Pehlivan, Qu, H. Y., Wen, R. T., & Niklasson, G. A. (2018). Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review. Electrochimica Acta, 259, 1170-1182. https://doi.org/10.1016/j.electacta.2017.11.169.

[52] Veziroglu, S., Ullrich, M., Hussain, M., Drewes, J., Shondo, J., Strunskus, T., Adam, J., Faupel, F., & Aktas, O. C. (2020). Plasmonic and non-plasmonic contributions on photocatalytic activity of Au-TiO2 thin film under mixed UV–visible light. Surface and Coatings Technology, 389, 125613. https://doi.org/10.1016/j.surfcoat.2020.125613.

[53] Hadia, N. M. A., Mohamed, W. S., & Abd El-sadek, M. S. (2019). Simultaneous synthesis of various Sb2S3 nanostructures by vapor transport technique. Materials Chemistry and Physics, 235(March), 121750. https://doi.org/10.1016/j.matchemphys.2019.121750.

[54] Patil, R. G., Yerudkar, A. N., Joglekar, A. R., Panse, S. V., Dalvi, V. H., Shankarling, G. S., Deshpande, V. D., Nayak, A. K., & Joshi, J. B. (2022). Transition metal compounds as solar selective material. Reviews in Chemical Engineering, 38(6), 669-702. https://doi.org/10.1515/revce-2020-0026.

[55] Hassanien, A. S., & Akl, A. A. (2016). Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Super-lattices and Microstructures, 89, 153-169. https://doi.org/10.1016/j.spmi.2015.10.044.

[56] Khalef, W. K., Mohammed, S. R., Salman, A. A., Shukur, N. J., Yousif, B. A., Al-Baghdadi, S. B., & Faisal, A. D. (2018). Oblique angle deposition of cadmium oxide film on quartz substrate. International Journal of Nanoelectronics and Materials, 11(Special Issue BOND21), 23-30.

[57] Han, Y., Dong, S., Shao, J., Fan, W., & Chi, C. (2021). Synthesis of a Sidewall Fragment of a (12,0) Carbon Nanotube. Angewandte Chemie, 133(5), 2690-2694. https://doi.org/10.1002/ange.202012651.

[58] Kumar, S., Kumar, S., Sharma, P., Sharma, V., & Katyal, S. C. (2012). CdS nanofilms: Effect of film thickness on morphology and optical band gap. Journal of Applied Physics, 112(12). https://doi.org/10.1063/1.4769799.

[59] Pedrosa, P., Ferreira, A., Cote, J.-M., Martin, N., Yazdi, M. A. P., Billard, A., Lanceros-Mendez, S., & Vaz, F. (2017). Influence of the sputtering pressure on the morphological features and electrical resistivity anisotropy of nanostructured titanium films. Applied Surface Science, 420, 681-690.

[60] Bilal, U., Ramzan, M., Imran, M., Naz, G., Mukhtar, M. W., Fahim, F., & Iqbal, H. M. N. (2022). HfO2-based nanostructured thin-films (i.e., low-e coatings) with robust optical performance and energy efficiency. Journal of Nanostructure in Chemistry, 12(6), 1131-1142. https://doi.org/10.1007/s40097-022-00485-2.

[61] Saha, A., Figueroba, A., & Konstantatos, G. (2020). Ag2ZnSnS4 Nanocrystals Expand the Availability of RoHS Compliant Colloidal Quantum Dots. Chemistry of Materials, 32(5), 2148-2155. https://doi.org/10.1021/acs.chemmater.9b05370.

[62] Sharma, S. S., Palaty, S., & John, A. K. (2021). Band gap modified zinc oxide nanoparticles: an efficient visible light active catalyst for wastewater treatment. International Journal of Environmental Science and Technology, 18(9), 2619-2632. 


[63] Zhang, X., Bao, N., Ramasamy, K., Wang, Y. H. A., Wang, Y., Lin, B., & Gupta, A. (2012). Crystal phase-controlled synthesis of Cu2FeSnS4 nanocrystals with a band gap of around 1.5 eV. Chemical Communications, 48(41), 4956-4958.


How to cite this paper

Optical Constants of Nanofilms for Spectrally Selective Windows

How to cite this paper: Winston T. Ireeta, Edward Bwayo, Daniel Mukiibi, Denis Okello, Willy Okullo, Robert Lugolole. (2024) Optical Constants of Nanofilms for Spectrally Selective WindowsOAJRC Material Science, 6(1), 1-11.

DOI: http://dx.doi.org/10.26855/oajrcems.2024.03.001