References
[1] Bwayo, E., & Obwoya, S. K. (2014). Coefficient of Thermal Diffusivity of Insulation Brick Developed from Sawdust and Clays. Journal of Ceramics, 2014, 1-6. https://doi.org/10.1155/2014/861726.
[2] Fang, B., YangC., Shen, W., Zhang, X., Zhang, Y., & Liu, X. (2017). Highly efficient omnidirectional structural color tuning method based on dielectric–metal–dielectric structure. Applied Optics, 56(4), 175-180.
[3] Multilayer, M. C., Nur-e-alam, M., Rahman, M., & Basher, M. K. (2020). Thin-Film Structures Prepared by RF.
[4] Chambouleyron, I., & Martinez, J. M. (2002). Optical properties of dielectric and semiconductor thin films. Handbook of Thin Films, 3, 593-622. https://doi.org/10.1016/b978-012512908-4/50048-5.
[5] Davalos, J. A. G., Carvano, J. M., & Blanco, J. (2017). Numerical determination of visible/NIR optical constants from laboratory spectra of HED meteorites. Icarus, 285, 275-290. https://doi.org/10.1016/j.icarus.2016.10.022.
[6] Sakkas, C., Rauch, J. Y., Cote, J. M., Tissot, V., Gavoille, J., & Martin, N. (2021). Tuning the optical properties of WO3 films exhibiting a zigzag columnar microstructure. Coatings, 11(4). https://doi.org/10.3390/coatings11040438.
[7] Włodarski, M., Chodorow, U., Jóźwiak, S., Putkonen, M., Durejko, T., Sajavaara, T., & Norek, M. (2019). Structural and optical char-acterization of ZnS ultrathin films prepared by low-temperature ALD from diethylzinc and 1.5-pentanedithiol after various annealing treatments. Materials, 12(19), 1-16. https://doi.org/10.3390/ma12193212.
[8] Peng, S., Yang, X., Yang, Y., Wang, S., Zhou, Y., Hu, J., Li, Q., & He, J. (2019). Direct Detection of Local Electric Polarization in the Interfacial Region in Ferroelectric Polymer Nanocomposites. Advanced Materials, 31(21), 1-9.
https://doi.org/10.1002/adma.201807722.
[9] Sun, X., Hu, K., Tu, J., & Chen, K. (2021). Design and preparation of superhydrophobic, broadband and double-layer antireflective coat-ings. Surfaces and Interfaces, 24(March). https://doi.org/10.1016/j.surfin.2021.101135.
[10] Sharma, N., Sharma, S., Prabakar, K., Amirthapandian, S., Ilango, S., Dash, S., & Tyagi, A. K. (2015). C. Substrate temperature induced microstructural transition from amorphous at RT, nanocrystalline at 300. ArXiv.
[11] Charles, C., Martin, N., & Devel, M. (2015). Optical properties of nanostructured WO3 thin films by GLancing Angle Deposition: Comparison between experiment and simulation. Surface and Coatings Technology, 276, 136-140.
https://doi.org/10.1016/J.SURFCOAT.2015.06.051.
[12] Dalapati, G. K., Kushwaha, A. K., Sharma, M., Suresh, V., Shannigrahi, S., Zhuk, S., & Masudy-Panah, S. (2018). Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance. Progress in Materials Science, 95, 42-131.
[13] Taylor, R. A., Hewakuruppu, Y., DeJarnette, D., & Otanicar, T. P. (2016). Comparison of selective transmitters for solar thermal applications. Applied Optics, 55(14), 3829. https://doi.org/10.1364/ao.55.003829.
[14] Baetens, R., Jelle, B. P., & Gustavsen, A. (2010). Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Solar Energy Materials and Solar Cells, 94(2), 87-105.
[15] Ding, G., & Clavero, C. (2017). Silver-Based Low-Emissivity Coating Technology for Energy-Saving Window Applications. Modern Technologies for Creating the Thin-Film Systems and Coatings. https://doi.org/10.5772/67085.
[16] Sharma, M., Sen, S., Gupta, J., Ghosh, M., Pitale, S., Gupta, V., & Gadkari, S. C. (2018). Tunable blue-green emission from ZnS(Ag) nanostructures grown by hydrothermal synthesis. Journal of Materials Research, 33(23), 3963-3970.
https://doi.org/10.1557/jmr.2018.358.
[17] Sönmezolu, S., Arslan, A., Serin, T., & Serin, N. (2011). The effects of film thickness on the optical properties of TiO 2-SnO2 compound thin films. Physica Scripta, 84(6). https://doi.org/10.1088/0031-8949/84/06/065602.
[18] Ramzan, M., Rana, A. M., Ahmed, E., Bhatti, A. S., Hafeez, M., Ali, A., & Nadeem, M. Y. (2014). Optical description of HfO2/Al/HfO2 multilayer thin film devices. Current Applied Physics, 14(12), 1854-1860. https://doi.org/10.1016/j.cap.2014.10.023.
[19] Haus, J. W., Katte, N., Serushema, J.-B., & Scalora, M. (2010). Metallodielectrics as metamaterials. Active Photonic Materials III, 7756(September 2010), 77560F. https://doi.org/10.1117/12.862407.
[20] Huang, L., Wang, T., Li, X., Wang, X., Zhang, W., Yang, Y., & Tang, Y. (2020). UV-to-IR highly transparent ultrathin diamond nanofilms with intriguing performances: Anti-fogging, self-cleaning and self-lubricating. Applied Surface Science, 527, 146733.
https://doi.org/10.1016/j.apsusc.2020.146733.
[21] Khan, S. B., Wu, H., Ma, L., Hou, M., & Zhang, Z. (2017). HfO2 Nanorod Array as High-Performance and High-Temperature Antire-flective Coating. Advanced Materials Interfaces, 4(6), 1-9. https://doi.org/10.1002/admi.201600892.
[22] Bartek, N., Shvartsman, V. V., Lupascu, D. C., Prah, U., & Uršič, H. (2019). Influence of synthesis route on the properties of lead iron niobate. 2019 IEEE International Symposium on Applications of Ferroelectrics, ISAF 2019 - Proceedings, 1-4.
https://doi.org/10.1109/ISAF43169.2019.9034943.
[23] Bashir, K., Ali, A., Ashraf, M., Mehboob, N., & Zaman, A. (2021). Optical and structural properties of vacuum annealed multilayer nanostructured CdZnS thin films deposited by thermal evaporation. Optical Materials, 119(May), 111353.
https://doi.org/10.1016/j.optmat.2021.111353.
[24] Savaloni, H., & Savari, R. (2018). Nano-structural variations of ZnO:N thin films as a function of deposition angle and annealing condi-tions: XRD, AFM, FESEM and EDS analyses. In Materials Chemistry and Physics (Vol. 214). https://doi.org/10.1016/j.matchemphys.2018.04.099.
[25] Boubaia, A., Assali, A., Berrah, S., Bennacer, H., Zerifi, I., & Boukortt, A. (2021). Band gap and emission wavelength tuning of Srdoped BaTiO3 (BST) perovskites for high-efficiency visible-light emitters and solar cells. Materials Science in Semiconductor Processing, 130(November 2020), 105837. https://doi.org/10.1016/j.mssp.2021.105837.
[26] Rhodes, C., Cerruti, M., Efremenko, A., Losego, M., Aspnes, D. E., Maria, J. P., & Franzen, S. (2008). Dependence of plasmon polaritons on the thickness of indium tin oxide thin films. Journal of Applied Physics, 103(9). https://doi.org/10.1063/1.2908862.
[27] Chalana, S. R., Ganesan, V., & Mahadevan Pillai, V. P. (2015). Surface plasmon resonance in nanostructured Ag incorporated ZnS films. AIP Advances, 5(10), 107207.
[28] Blake, J. C., Rossi, S., Jonsson, M. P., & Dahlin, A. (2022). Scalable Reflective Plasmonic Structural Colors from Nanoparticles and Cavity Resonances – the Cyan-Magenta-Yellow Approach. Advanced Optical Materials, 10(13).
https://doi.org/10.1002/adom.202200471.
[29] Vrakatseli, V. E., Kalarakis, A. N., Kalampounias, A. G., Amanatides, E. K., & Mataras, D. S. (2018). Glancing angle deposition effect on structure and light-induced wettability of RF-sputtered TiO2 thin films. Micromachines, 9(8).
https://doi.org/10.3390/mi9080389.
[30] Diab, M., & Alabbosh, O. (2018). Studying of Thickness Effects on the Optical and Structural Properties of ZnO / Ag / ZnO Multilayer Thin Films by Using Surface Plasmon Resonance. 70, 27-30.
[31] Chaffar Akkari, F., Ben Jbara, H., Abdelkader, D., Gallas, B., & Kanzari, M. (2018). Effect of angle deposition γ on the structural, optical and electrical properties of copper oxide zigzag (+γ, −γ) nanostructures elaborated by glancing angle deposition. Thin Solid Films, 657, 61-69. https://doi.org/10.1016/j.tsf.2018.05.006.
[32] Jones, A., Uggalla, L., Li, K., Fan, Y., Willow, A., Mills, C. A., & Copner, N. (2021). Continuous in-line chromium coating thickness measurement methodologies: An investigation of current and potential technology. Sensors, 21(10). https://doi.org/10.3390/s21103340.
[33] Studenikin, S. A., Golego, N., & Cocivera, M. (1998). Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution. Journal of Applied Physics, 83(4), 2104-2111. https://doi.org/10.1063/1.366944.
[34] Garlisi, C., Trepci, E., Li, X., Al Sakkaf, R., Al-Ali, K., Nogueira, R. P., Zheng, L., Azar, E., & Palmisano, G. (2020). Multilayer thin film structures for multifunctional glass: Self-cleaning, antireflective and energy-saving properties. Applied Energy, 264(February). https://doi.org/10.1016/j.apenergy.2020.114697.
[35] Bashir, K., Ali, A., Ashraf, M., Mehboob, N., & Zaman, A. (2021). Optical and structural properties of vacuum annealed multilayer nanostructured CdZnS thin films deposited by thermal evaporation. Optical Materials, 119(May).
https://doi.org/10.1016/j.optmat.2021.111353.
[36] He, C. Y., Gao, X. H., Yu, D. M., Guo, H. X., Zhao, S. S., & Liu, G. (2021). Highly Enhanced Thermal Robustness and Photothermal Conversion Efficiency of Solar-Selective Absorbers Enabled by High-Entropy Alloy Nitride MoTaTiCrN Nanofilms. ACS Applied Materials and Interfaces, 13(14), 16987-16996. https://doi.org/10.1021/acsami.0c23011.
[37] Zhao, Y., Xu, R., Zhang, X., Hu, X., Knize, R. J., & Lu, Y. (2013). Simulation of smart windows in the ZnO/VO2/ZnS sandwiched structure with improved thermochromic properties. Energy and Buildings, 66, 545-552. https://doi.org/10.1016/j.enbuild.2013.07.071.
[38] Cho, H., Yun, C., Park, J.-W., & Yoo, S. (2009). Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes. Organic Electronics, 10(6), 1163-1169.
[39] Osanyinlusi, O., Mukolu, A. I., & Zebaze Kana, M. G. (2016). Structural and optical properties of Al/ZnO thin films deposited by radio frequency sputtering. Materials Research Express, 3(9), 1-9. https://doi.org/10.1088/2053-1591/3/9/096401.
[40] Lou, R., Zhang, G., Li, G., Li, X., Liu, Q., & Cheng, G. (2020). Design and fabrication of dual-scale broadband antireflective structures on metal surfaces by using nanosecond and femtosecond lasers. Micromachines, 11(1). https://doi.org/10.3390/mi11010020.
[41] Włodarski, M., Chodorow, U., Jóźwiak, S., Putkonen, M., Durejko, T., Sajavaara, T., & Norek, M. (2019). Structural and Optical Characterization of ZnS Ultrathin Films Prepared by Low-Temperature ALD from Diethylzinc and 1.5-Pentanedithiol after Various Annealing Treatments. Materials, 12(19), 3212.
[42] Cho, K. H., Ahn, S. Il, Lee, S. M., Choi, C. S., & Choi, K. C. (2010). Surface plasmonic controllable enhanced emission from the intrachain and interchain excitons of a conjugated polymer. Applied Physics Letters, 97(19). https://doi.org/10.1063/1.3508949.
[43] Lee, G.-J., & Wu, J. J. (2017). Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—A review. Powder Technology, 318, 8-22.
[44] He, Y., Basnet, P., Murph, S. E. H., & Zhao, Y. (2013). Ag nanoparticle embedded TiO2 composite nanorod arrays fabricated by oblique angle deposition: Toward plasmonic photocatalysis. ACS Applied Materials and Interfaces, 5(22), 11818-11827.
https://doi.org/10.1021/am4035015.
[45] Al Garni, S. E., & Qasrawi, A. F. (2017). Effect of Indium nano-sandwiching on the structural and optical performance of ZnSe films. Results in Physics, 7, 4168-4173. https://doi.org/10.1016/j.rinp.2017.10.040.
[46] Multilayer, M. C., Nur-e-alam, M., Rahman, M., & Basher, M. K. (2020). Thin-Film Structures Prepared by RF.
[47] Vrakatseli, V. E., Kalarakis, A. N., Kalampounias, A. G., Amanatides, E. K., & Mataras, D. S. (2018). Glancing angle deposition effect on structure and light-induced wettability of RF-sputtered TiO2 thin films. Micromachines, 9(8), 389.
[48] Zhou, C., & Liu, H. (2017). A novel nanofibrous film chemosensor for highly selective and sensitive optical signaling of Zn2+. Journal of the Brazilian Chemical Society, 28(10), 1947-1952. https://doi.org/10.21577/0103-5053.20170036.
[49] Sönmezoǧlu, S., Termeli, T. A., Akin, S., & Askeroǧlu, I. (2013). Synthesis and characterization of tellurium-doped CdO nanoparticles thin films by sol-gel method. Journal of Sol-Gel Science and Technology, 67(1), 97-104. https://doi.org/10.1007/s10971-013-3054-1.
[50] Pan, Y., Fan, Y., & Niu, J. (2020). Optical properties of ultra-thin silver films deposited by thermal evaporation and its application in optical filters. Infrared Physics and Technology, 104, 103123. https://doi.org/10.1016/j.infrared.2019.103123.
[51] Granqvist, C. G., Arvizu, M. A., Bayrak Pehlivan, Qu, H. Y., Wen, R. T., & Niklasson, G. A. (2018). Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review. Electrochimica Acta, 259, 1170-1182. https://doi.org/10.1016/j.electacta.2017.11.169.
[52] Veziroglu, S., Ullrich, M., Hussain, M., Drewes, J., Shondo, J., Strunskus, T., Adam, J., Faupel, F., & Aktas, O. C. (2020). Plasmonic and non-plasmonic contributions on photocatalytic activity of Au-TiO2 thin film under mixed UV–visible light. Surface and Coatings Technology, 389, 125613. https://doi.org/10.1016/j.surfcoat.2020.125613.
[53] Hadia, N. M. A., Mohamed, W. S., & Abd El-sadek, M. S. (2019). Simultaneous synthesis of various Sb2S3 nanostructures by vapor transport technique. Materials Chemistry and Physics, 235(March), 121750. https://doi.org/10.1016/j.matchemphys.2019.121750.
[54] Patil, R. G., Yerudkar, A. N., Joglekar, A. R., Panse, S. V., Dalvi, V. H., Shankarling, G. S., Deshpande, V. D., Nayak, A. K., & Joshi, J. B. (2022). Transition metal compounds as solar selective material. Reviews in Chemical Engineering, 38(6), 669-702. https://doi.org/10.1515/revce-2020-0026.
[55] Hassanien, A. S., & Akl, A. A. (2016). Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Super-lattices and Microstructures, 89, 153-169. https://doi.org/10.1016/j.spmi.2015.10.044.
[56] Khalef, W. K., Mohammed, S. R., Salman, A. A., Shukur, N. J., Yousif, B. A., Al-Baghdadi, S. B., & Faisal, A. D. (2018). Oblique angle deposition of cadmium oxide film on quartz substrate. International Journal of Nanoelectronics and Materials, 11(Special Issue BOND21), 23-30.
[57] Han, Y., Dong, S., Shao, J., Fan, W., & Chi, C. (2021). Synthesis of a Sidewall Fragment of a (12,0) Carbon Nanotube. Angewandte Chemie, 133(5), 2690-2694. https://doi.org/10.1002/ange.202012651.
[58] Kumar, S., Kumar, S., Sharma, P., Sharma, V., & Katyal, S. C. (2012). CdS nanofilms: Effect of film thickness on morphology and optical band gap. Journal of Applied Physics, 112(12). https://doi.org/10.1063/1.4769799.
[59] Pedrosa, P., Ferreira, A., Cote, J.-M., Martin, N., Yazdi, M. A. P., Billard, A., Lanceros-Mendez, S., & Vaz, F. (2017). Influence of the sputtering pressure on the morphological features and electrical resistivity anisotropy of nanostructured titanium films. Applied Surface Science, 420, 681-690.
[60] Bilal, U., Ramzan, M., Imran, M., Naz, G., Mukhtar, M. W., Fahim, F., & Iqbal, H. M. N. (2022). HfO2-based nanostructured thin-films (i.e., low-e coatings) with robust optical performance and energy efficiency. Journal of Nanostructure in Chemistry, 12(6), 1131-1142. https://doi.org/10.1007/s40097-022-00485-2.
[61] Saha, A., Figueroba, A., & Konstantatos, G. (2020). Ag2ZnSnS4 Nanocrystals Expand the Availability of RoHS Compliant Colloidal Quantum Dots. Chemistry of Materials, 32(5), 2148-2155. https://doi.org/10.1021/acs.chemmater.9b05370.
[62] Sharma, S. S., Palaty, S., & John, A. K. (2021). Band gap modified zinc oxide nanoparticles: an efficient visible light active catalyst for wastewater treatment. International Journal of Environmental Science and Technology, 18(9), 2619-2632.
https://doi.org/10.1007/s13762-020-02976-7.
[63] Zhang, X., Bao, N., Ramasamy, K., Wang, Y. H. A., Wang, Y., Lin, B., & Gupta, A. (2012). Crystal phase-controlled synthesis of Cu2FeSnS4 nanocrystals with a band gap of around 1.5 eV. Chemical Communications, 48(41), 4956-4958.
https://doi.org/10.1039/c2cc31648j.