magazinelogo

International Journal of Food Science and Agriculture

ISSN Print: 2578-3467 Downloads: 205625 Total View: 2898089
Frequency: quarterly ISSN Online: 2578-3475 CODEN: IJFSJ3
Email: ijfsa@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/ijfsa.2020.06.006

Potential of Acclimated Earthworm (Eisenia Andrei) for Detoxification of Olive Mill Wastewater

Barhoum Kharbouch 1,2,*, Hicham Lakhtar 1, Sandrine Amat 2, Sevastianos Roussos 2, Nathalie Dupuy 2, Abdelhamid El Mousadik 3

1 Laboratory of Microbial Biotechnology and Crop Protection, Ibn Zohr University, Faculty of Sciences, BP 8106 City Dakhla Agadir, Morocco.

2 Aix Marseille Univ, CNRS, IRD, Avignon university IMBE, UMR 7263, 13397 Marseille, France.Aix Marseille Univ, CNRS, IRD, Avignon university IMBE, UMR 7263, 13397 Marseille, France.

3 Laboratory of biotechnology and valorization of natural resources, University of Ibn Zohr, faculty of sciences, BP 8106 City Dakhla Agadir, Morocco.

*Corresponding author: Barhoum Kharbouch, Laboratory of Microbial Biotechnology and Crop Protection, Ibn Zohr University, Faculty of Sciences, BP 8106 City Dakhla Agadir, Morocco; Aix Marseille Univ, CNRS, IRD, Avignon university IMBE, UMR 7263, 13397 Marseille, France.

Published: April 24,2020

Abstract

The present study was conducted to evaluate the potential of acclimated and unacclimated earthworm (Eisenia andrei) for decomposition and detoxification of olive mill wastewater (OMWW). Although, they stimulate biological reactions at low concentrations, OMWW are toxic to earthworms and microorganisms at moderate concentrations and can cause negative effects on the vermicomposting processes. After two months of laboratory vermicomposting, the growth rate (21.83±0.01 mg worm-1 day-1) of earthworms and phenols reduction (72%), were higher with acclimated earthworms. However, unacclimated earthworms showed lower growth rate (4.67±0.01 mg worm-1day-1) and phenols reduction (41%). Moreover, the vermicompost produced with acclimated earthworm is characterized by alkaline pH (9.9), optimal electrical conductivity (78.20 dS cm-1), optimal C/N ratios (17.40-18.00) and an increase in total nitrogen (1.7-2.0 %). The data reveal that the acclimated earthworms are well adapted in the moderate OMWW concentration and their utilization in vermicomposting process could be a promising alternative for OMWW detoxification. Additionally, vermicomposting can be a suitable technology for olive mill wastewater treatment.

References

[1] Roig, A., Cayuela, M.L. and Sánchez-Monedero M. (2006). An overview on olive mill wastes and their valorisation methods. Waste management, 26, 960–969.

[2] Barbera, A., Maucieri, C., Cavallaro, V., Ioppolo, A. and Spagna, G. (2013). Effects of spreading olive mill wastewater on soil properties and crops, a review. Agricultural Water Management, 119, 43–53.

[3] IOOC. (2016). Market newsletter of international olive oil council. http://www.internationaloliveoil.org.

[4] Stasinakis, A.S., Elia, I., Petalas, A.V. and Halvadakis, C.P. (2008). Removal of total phenols from olive-mill wastewater using an agricultural by-product, olive pomace. Journal of Hazardous Materials, 160, 408–413.

[5] Ait Baddi, G., Alburquerque, J.A., Gonzálvez, J., Cegarra, J. and Hafidi, M. (2004). Chemical and spectroscopic analyses of organic matter transformations during composting of olive mill wastes. International Biodeterioration & Biodegradation, 54, 39–44.

[6] El Hajjouji, H., Fakharedine, N., Ait Baddi, G., Winterton, P., Bailly, J., Revel, J. and Hafidi, M. (2007). Treatment of olive mill waste-water by aerobic biodegradation: an analytical study using gel permeation chromatography, ultraviolet—visible and Fourier transform infrared spectroscopy. Bioresource technology, 98, 3513–3520.

[7] Zenjari, B. and Nejmeddine, A. (2001). Impact of spreading olive mill wastewater on soil characteristics: laboratory experiments. Agronomie, 21, 749–755

[8] Kapellakis, I.E., Tsagarakis, K.P. and Crowther, J.C. (2008). Olive oil history, production and by-product management. Reviews in Environmental Science and Bio/Technology, 7, 1–26.

[9] Paraskeva, C., Papadakis, V., Tsarouchi, E., Kanellopoulou, D. and Koutsoukos, P. (2007). Membrane processing for olive mill wastewater fractionation. Desalination, 213, 218–229.

[10] Garg, V. and Gupta, R. (2011) Optimization of cow dung spiked pre-consumer processing vegetable waste for vermicomposting using Eisenia fetida. Ecotoxicology and environmental safety, 74, 19–24

[11] Yadav, K.D., Tare, V. and Ahammed, M.M. (2011). Vermicomposting of source-separated human faeces by Eisenia fetida: effect of stocking density on feed consumption rate, growth characteristics and vermicompost production. Waste management, 31, 1162–1168.

[12] Melgar, R., Benitez, E. and Nogales, R. (2009). Bioconversion of wastes from olive oil industries by vermicomposting process using the epigeic earthworm Eisenia andrei. Journal of Environmental Science and Health, Part B.44, 488–495.

[13] Sharma, S., Pradhan, K. Satya, S. and Vasudevan, P. (2005). Potentiality of earthworms for waste management and in other uses—A review. The Journal of American Science, 1, 4–16. 

[14] Bouché, M.B. (1972). Lombriciens de France: écologie et systématique. Annales de Zoologie Ecologie Animale, INRA Editions, Paris.

[15] Dominguez, J. (2004). State-of-the-Art and New Perspectives on Vermicomposting Research. In: CRC Press, Ed., Earthworm ecology, Edwards C., Boca Raton, 401–424.

[16] Ndegwa, P.M., Thompson, S.A. and Das, K.C. (2000). Effects of stocking density and feeding rate on vermicomposting of biosolids. Bioresource technology, 71(1), 5-12.

[17] Edwards, C.A. (1998) The use of earthworms in the breakdown and management of organic wastes. In: CRC Press, Ed., Earthworm Ecology, C.A. Edwards., Boca Raton Florida, 327–354.

[18] Ganesh, P.S., Gajalakshmi, S. and Abbasi, S.A. (2009) Vermicomposting of the leaf litter of acacia (Acacia auriculiformis): Possible roles of reactor geometry, polyphenols, and lignin. Bioresource technology, 100, 1819–1827.

[19] Suthar, S. (2008a). Bioremediation of aerobically treated distillery sludge mixed with cow dung by using an epigeic earthworm Eisenia fetida. The Environmentalist, 28, 76–84.

[20] Mekki, A., Dhouib, A. and Sayadi, S. (2006). Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater. Microbiological Research, 161, 93–101.

[21] Wang, P., Changa, C., Watson, M., Dick, W., Chen, Y. and Hoitink, H. (2004). Maturity indices for composted dairy and pig manures. Soil Biology and Biochemistry, 36, 767–776.

[22] Sánchez-Monedero, M., Roig, A. Paredes, C. and Bernal, M. (2001). Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresource technology, 78, 301–308.

[23] Benitez, E., Nogales, R., Elvira, C., Masciandaro, G. and Ceccanti, B. (1999). Enzyme activities as indicators of the stabilization of sewage sludges composting with Eisenia foetida. Bioresource technology, 67, 297–303.

[24] Tiquia, S. and Tam, N. (2000). Co-composting of spent pig litter and sludge with forced-aeration. Bioresource technology, 72, 1–7.

[25] Benito, M., Masaguer, A., Moliner, A., Arrigo, N. and Palma, R.M. (2003). Chemical and microbiological parameters for the characterisation of the stability and maturity of pruning waste compost. Biology and Fertility of Soils, 37, 184–189.

[26] Shi, Q-W., Liu, Q., Rong, X-M., Xie, G-X., Peng, J-W., Yu, Y-L., Zhang, Y-P. and Chen, X. (2006). Effects of different microbial agents on fermentation of rice straw in composting. Journal-Hunan Agricultural University, 32, 264.

[27] Dias, B.O., Silva, C.A., Higashikawa, F.S., Roig, A. and Sánchez-Monedero, M.A. (2010). Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification. Bioresource technology, 101,1239–1246.

[28] Tognetti, C., Mazzarino, M.J. and Laos, F. (2007). Cocomposting biosolids and municipal organic waste: effects of process management on stabilization and quality. Biol. Fert Soils, 43, 387–397.

[29] Plaza, C., Nogales, R., Senesi, N., Benitez, E. and Polo, A. (2008). Organic matter humification by vermicomposting of cattle manure alone and mixed with two-phase olive pomace. Bioresource technology, 99, 5085–5089.

[30] Asses, N., Farhat, A., Cherif, S., Hamdi, M. and Bouallagui, H. (2018). Comparative study of sewage sludge co-composting with olive mill wastes or green residues: Process monitoring and agriculture value of the resulting composts. Process Safety and Environmental Protection, 114, 25-35.

[31] Lim, S.L., Wu, T. Sim, E.Y.S., Lim, P.N. and Clarke, C. (2012). Biotransformation of rice husk into organic fertilizer through vermicomposting. Ecological Engineering, 41, 60–64.

[32] Gunadi, B. and Edwards, C.A. (2003). The effects of multiple applications of different organic wastes on the growth, fecundity and survival of Eisenia fetida (Savigny) (Lumbricidae). Pedobiologia, 47, 321–329.

[33] Mitchell, A. (1997). Production of Eisenia fetida and vermicompost from feed-lot cattle manure. Soil Biology and Biochemistry, 29, 763–766.

[34] Alburquerque, J.A., Gonzálvez, J., García, D. and Cegarra, J. (2006). Measuring detoxification and maturity in compost made from “alperujo”, the solid by-product of extracting olive oil by the two-phase centrifugation system. Chemosphere, 64, 470–477.

[35] Kumar, M., Ou, Y. and Lin, J. (2010). Co-composting of green waste and food waste at low C/N ratio. Waste management, 30(4), 602–609.

[36] Mustin, M. (1987). Le compost: Gestion de la matière organique, Editions François Dubusc. Paris.

[37] Bishop, P.L. and Godfrey, C. (1983). Nitrogen transformations during sludge composting. Biocycle, 24, 34–39.

[38] Golueke, C.G. (1992).  Bacteriology of composting. Biocycle, 33, 55–57.

[39] Ndegwa, P.M. and Thompson, S. (2000). Effects of C-to-N ratio on vermicomposting of biosolids. Bioresource technology, 75, 7–12. 

[40] Allison, F.E. (1973). Soil organic matter and its role in crop production. Elsevier scientific publishing company,Washington, USA.

[41] Grigatti, M., Ciavatta, C. and Gessa, C. (2004). Evolution of organic matter from sewage sludge and garden trimming during composting. Bioresource technology, 91, 163–169.

[42]  arkin, T.B. and Berry, E.C. (1999). Microbial nitrogen transformations in earthworm burrows. Soil Biology and Biochemistry, 31, 1765–1771.

[43] Suthar, S. (2008b). Development of a novel epigeic-anecic-based polyculture vermireactor for efficient treatment of municipal sewage water sludge. International Journal of Environment and Waste Management, 2, 84–101.

[44] Galliou, F., Markakis, N., Fountoulakis, M.S., Nikolaidis, N. and Manios, T. (2018). Production of organic fertilizer from olive mill wastewater by combining solar greenhouse drying and composting. Waste Management, 75, 305-311.

[45] Madani, M., Aliabadi, M., Nasernejad, B., Kermanj, R.A. and Kestioglu, K. (2015). Treatment of olive mill wastewater using physico-chemical and Fenton process. Desalin Water Treatment, 53, 2031–2040.

How to cite this paper

Potential of Acclimated Earthworm (Eisenia Andrei) for Detoxification of Olive Mill Wastewater

How to cite this paper: Barhoum Kharbouch, Hicham Lakhtar, Sandrine Amat, Sevastianos Roussos, Nathalie Dupuy, and Abdelhamid El Mousadik. (2020) Potential of Acclimated Earthworm (Eisenia Andrei) for Detoxification of Olive Mill Wastewater. International Journal of the Science of Food and Agriculture, 4(2), 148-155.

DOI: http://dx.doi.org/10.26855/ijfsa.2020.06.006