Hill Publishing Group | contact@hillpublisher.com

Hill Publishing Group

Location:Home / Journals / Journal of Applied Mathematics and Computation /

DOI:http://dx.doi.org/10.26855/jamc.2020.06.001

On Modular Happy Numbers II

Date: April 26,2020 |Hits: 3679 Download PDF How to cite this paper

Raghib Abusaris 1,*, Sai’da Atawna 2

1 Department of Epidemiology and Biostatistics, College of Public Health and Health Informatics, King Saud bin Abdelaziz University for Health Science, Riyadh, Saudi Arabia.

2 Department of Economics Imam Malik Academy, Basaksehir, Istanbul, Turkey.

*Corresponding author: Raghib Abusaris, Department of Epidemiology and Biostatistics, College of Public Health and Health Informatics, King Saud bin Abdelaziz University for Health Science, Riyadh, Saudi Arabia.

Abstract

In this paper, we investigate the asymptotic behavior of the sequences generated by iterating the process of summing the powers modulo - 1 in base-b system where  is a power of prime. In particular, we identify modular happy numbers. Following the spirit of happy number [1, p. 374], a number is called b-modular happy if the sequence obtained by iterating the process of summig the powers modulo (- 1) in base-system ends with 1.

References

[1] Guy, R. (2004). Unsolved problems in number theory (3rd ed.). New York, NY: Springer.

[2] Abu-Saris, R. & Bayyati, O. (2018), On Modular Happy Numbers. Notes on Number.
Theory and Discrete Mathematics, 24: 117124. DOI: 10.7546/nntdm.2018.24.2.117-124.

[3] Rosen, K. H. (2019). Discrete mathematics and its applications (8th ed.). New York, NY: McGraw-Hill.

[4] Weisstein,  E. W. (2020). Periodic sequence. Retrieved from http://mathworld.wolfram.com/PeriodicSequence. html.

[5] Keef, P., & Guichard, D. (2018). An Introduction to Higher Mathematics, San Francisco, CA: Creative Commons.

[6] Gilmer, J. (2013). On the density of happy numbers. Integers,13, A48: 1-25.

[7] Trevio, E. & Zhylinski, M. (2019). On generalizing happy numbers to fractional-base number systems. Involve, 12: 11431151.

[8] Williams, E. S. (2016). Further Generalizations of Happy Numbers. Retrieved from http://sections.maa.org/ epadel/awards/studentpaper/winners/2016Williams.pdf.

How to cite this paper

On Modular Happy Numbers II

How to cite this paper: Raghib Abusaris, Sai’da Atawna. (2020) On Modular Happy Numbers II. Journal of Applied Mathematics and Computation, 4(2), 14-17.

DOI: http://dx.doi.org/10.26855/jamc.2020.06.001

Volumes & Issues

Free HPG Newsletters

Add your e-mail address to receive free newsletters from Hill Publishing Group.

Contact us

Hill Publishing Group

8825 53rd Ave

Elmhurst, NY 11373, USA

E-mail: contact@hillpublisher.com

Copyright © 2019 Hill Publishing Group Inc. All Rights Reserved.