magazinelogo

International Journal of Clinical and Experimental Medicine Research

ISSN Print: 2575-7989 Downloads: 202161 Total View: 2392509
Frequency: quarterly ISSN Online: 2575-7970 CODEN: IJCEMH
Email: ijcemr@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/ijcemr.2020.04.005

Genetic polymorphism of DNATyper X19 kit in Northern Chinese Han people

YU Zhengliang 1, CAI Huiju 1, MA Wenhua 1, MO Xiaoting 1, YAO Yiren 1, WANG Le 1, LIU Chao 2, ZHAO Xingchun 1, LI Wanshui 1,*

1 Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.

2 Guangzhou Forensic Institute, Guangzhou 510000, China.

*Corresponding author: LI Wanshui, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.

Published: May 7,2020

Abstract

Objective. To evaluate the value of DNATyper X19 kit in the forensic application. Methods. In this study, we carried out a survey of genetic polymorphism from 374 Northern Chinese Han individuals. Results. A total of 140 alleles were detected among the 18 X-STR loci from 374 Northern Chinese Han individuals, 228 haplotypes were detected from the 228 males, the diversity is 100%. No markers departed from Hardy-Weinberg equilibrium after applying Bonferroni’s correction for multiple testing (p=0.05/18), GATA31E08-DXS6797, DXS8377-DXS10079 were in linkage disequilibrium (LD) in this study (p=0.05/153). The polymorphism information content (PIC) was 0.434-0.908 and the discrimination power (DP) was 0.432-0.983. The combined discrimination power was 0.99999993 for male and 0.999999992 for female. The combined mean exclusion chance was 0.999993 in duo cases (CMECduo) and 0.999999994 in trio case (CMECtrio). Conclusions. DNATyper X19 kit showed potential value for complicated paternity cases.

References

[1] Becker D, Rodig H, Augustin C, et al. (2008). Population genetic evaluation of eight X-chromosomal short tandem repeat loci using Mentype Argus X-8 PCR amplification kit. Forensic Science International: Genetics, 2(1): 69-74.

[2] Hatsch D, Keyser C, Hienne R, et al. (2007). Resolving paternity relationships using X-chromosome STRs and Bayesian networks. Journal of Forensic Sciences, 52(4): 895-897.

[3] Szibor R, Krawczak M, Hering S, et al. (2003). Use of X linked markers for forensic purposes. International Journal of Legal Medicine, 117(2): 67-74.

[4] Yu Z L, Sun J, Ding G S, et al. (2018). The application of X-STR: two case reports. Journal of Pharmacy and Pharmacology, 6(9): 859-862.

[5] Hundertmark T, Hering S, Edelmann J, et al. (2008). The STR cluster DXS10148–DXS8378–DXS10135 provides a powerful tool for X-chromosomal haplotyping at Xp22. International Journal of Legal Medicine, 122(6): 489-492.

[6] Edelmann J, Hering S, Augustin C, et al. (2008). Haplotypes and haplotype stability within a 126.6 kb region at Xq28. Forensic Science International: Genetics, 1(1): 554-556.

[7] Edelmann J, Hering S, Augustin C, et al. (2009). Chromosome X centromere region – haplotype frequencies for different populations. Forensic Science International: Genetics, 2(1): 398-399.

[8] Ferreira Da Silva I H, Barbosa A G, Azavedo D A, et al. (2010). An X-chromosome penta-plex in two linkage groups: haplotype data in Alagoas and Rio de Janeiro populations from Brazil. Forensic Science International: Genetics, 4(4): 95-100.

[9] DNA Advisory Board. Quality assurance standards DNA databasing laboratories. (2008). Forensic Science Communications, 10. https://www2.fbi.gov/hq/lab/fsc/backissu/oct2008/standards/2008_10_standards01a.htm.

[10] SWGDAM Executive Board. (2016) SWGDAM Validation Guidelines for DNA Analysis Methods, posting on www.swgdam.org [12-05]. https://docs.wixstatic.com/ugd/4344b0_813b241e8944497e99b9c45b163b76bd.pdf.

[11] Tereba A. (1999). Tools for analysis of population statistics. Profiles in DNA, USA: Gene-Press, 2(3): 14-16.

[12] Ge Jy, Eisenberg A, Budowle B. (2012). Developing criteria and data to determine best options for expanding the core CODIS loci. Investigative Genetics, 3(1): 1. 

[13] Weir B S. (2004). Matching and partially-matching DNA profiles. Journal of Forensic Sciences, 49(5): 1009-1014. 

[14] Ge Jy, Chakraborly R, Eisenberg A J, et al. (2011). Comparisons of familial DNA database searching strategies. Journal of Forensic Sciences, 56(6): 1448-1456.

[15] Ge Jy, Budowle B, Chakraborly R.(2011). Choosing relatives for DNA identification of missing persons. Journal of Forensic Sciences, 56(s1): 23-28.

[16] Schneider P M. (2007). Scientific standards for studies in forensic genetics. Forensic Science International, 165(2): 238-243.

[17] Tomas C, Pereira V, Morling N. (2012). Analysis of 12 X-STRs in Greenlanders, Danes and Somalis using Argus X-12. International Journal of Legal Medicine, 126(1): 121-128. 

[18] Zhang S, Zhao S, Zhu R, et al. (2012). Genetic polymorphisms of 12 X-STR for forensic purposes in Shanghai Han population from China. Molecular Biology Reports, 39(5): 5705-5707.

[19] Samejima M, Nakamura Y, Nambiar P, et al. (2012). Genetic study of 12 X-STRs in Malay population living in and around Kuala Lumpur using Investigator Argus X-12 kit. International Journal of Legal Medicine, 126(4): 677-683.

[20] Tillmar A O. (2012). Population genetic analysis of 12 X-STRs in Swedish population. Forensic Science International: Genetics, 6(2): 80-81.

[21] Shin S H, Yu J S, Park S W, et al. (2005). Genetic analysis of 18 X-linked short tandem repeat markers in Korean population. Forensic science international, 147(1): 35-41.

 

How to cite this paper

Genetic polymorphism of DNATyper X19 kit in Northern Chinese Han people

How to cite this paper: YU Zhengliang, CAI Huiju, MA Wenhua, MO Xiaoting, YAO Yiren, WANG Le, LIU Chao, ZHAO Xingchun, LI Wanshui. (2020) Genetic polymorphism of DNATyper X19 kit in Northern Chinese Han people. International Journal of Clinical and Experimental Medicine Research, 4(2), 28-33.

DOI: http://dx.doi.org/10.26855/ijcemr.2020.04.005