References
[1] K. Y. Lee. (1984). Fuel-cost minimisation for both real and reactive-power dispatches,” Proceedings Generation, Transmission and Distribution Conference, vol/issue: 131(3), pp. 85-93.
[2] N. I. Deeb. (1998). An efficient technique for reactive power dispatch using a revised linear programming approach. Electric Power System Research, vol/issue: 15(2), pp. 121-134.
[3] M. R. Bjelogrlic, M. S. Calovic, B. S. Babic. (1990). Application of Newton’s optimal power flow in voltage/reactive power control. IEEE Trans Power System, vol. 5, no. 4, pp. 1447-1454.
[4] S. Granville. (1994). Optimal reactive dispatch through interior point methods. IEEE Transactions on Power System, vol/issue: 9(1), pp. 136-146.
[5] N. Grudinin. (1998). Reactive power optimization using successive quadratic programming method. IEEE Transactions on Power System, vol/issue: 13(4), pp. 1219-1225.
[6] Ng Shin Mei, R., Sulaiman, M.H., Mustaffa, Z., Daniyal, H. (2017). Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique. Appl. Soft Comput. 2017, 59, 210-222.
[7] Chen, G., Liu, L., Zhang, Z., Huang, S. (2017). Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints. Appl. Soft Comput. 2017, 50, 58-70.
[8] Naderi, E., Narimani, H., Fathi, M., Narimani, M.R. (2017). A novel fuzzy adaptive configuration of particle swarm optimization to solve large-scale optimal reactive power dispatch. Appl. Soft Comput. 2017, 53, 441-456.
[9] Heidari, A.A., Ali Abbaspour, R., Rezaee Jordehi. (2017). A. Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems. Appl. Soft Comput. 2017, 57, 657-671.
[10] Mahaletchumi Morgan, Nor Rul Hasma Abdullah, Mohd Herwan Sulaiman, Mahfuzah Mustafa, Rosdiyana Samad. (2016). Benchmark Studies on Optimal Reactive Power Dispatch (ORPD) Based Multi-objective Evolutionary Programming (MOEP) Using Mutation Based on Adaptive Mutation Adapter (AMO) and Polynomial Mutation Operator (PMO). Journal of Electrical Systems, 12-1.
[11] Rebecca Ng Shin Mei, Mohd Herwan Sulaiman, Zuriani Mustaffa. (2016). Ant Lion Optimizer for Optimal Reactive Power Dispatch Solution. Journal of Electrical Systems, “Special Issue AMPE2015”, pp. 68-74.
[12] Ram Kishan Mahate, & Himmat Singh. (2019). Multi-Objective Optimal Reactive Power Dispatch Using Differential Evolution. International Journal of Engineering Technologies and Management Research, 6(2), 27-38.
[13] Gagliano A., Nocera F. (2017). Analysis of the performances of electric energy storage in residential applications. International Journal of Heat and Technology. Vol. 35, Special Issue 1, pp. S41-S48.
[14] Caldera M., Ungaro P., Cammarata G., Puglisi G. (2018). Survey-based analysis of the electrical energy demand in Italian households. Mathematical Modelling of Engineering Problems, Vol. 5, No. 3, pp. 217-224.
[15] M. Basu. (2016). Quasi-oppositional differential evolution for optimal reactive power dispatch. Electrical Power and Energy Systems, vol. 78, pp. 29-40.
[16] T. Weise. (2009). Global Optimization Algorithms—Theory and Application, Germany: it-weise.de (self-published), [Online]. Available: http://www.it-weise.de/.
[17] M.A.K. Azad, A.M.A.C. Rocha, E.M.G.P. Fernandes. (2014). A simplified binary artificial fish swarm algorithm for 0-1 quadratic knapsack problems. Journal of Computation Applied Mathematics, 259, 897-904.
[18] IEEE. (1993). “The IEEE-test systems”. http://www.ee.washington.edu/trsearch/pstca/.
[19] Ali Nasser Hussain, Ali Abdulabbas Abdullah and Omar Muhammed Neda. (2018). Modified Particle Swarm Optimization for Solution of Reactive Power Dispatch. Research Journal of Applied Sciences, Engineering and Technology 15(8): 316-327.
[20] S. Surender Reddy. (2017). Optimal Reactive Power Scheduling Using Cuckoo Search Algorithm. International Journal of Electrical and Computer Engineering. Vol. 7, No. 5, pp. 2349-2356.
[21] S.S. Reddy. (2014). Faster evolutionary algorithm based optimal power flow using incremental variables. Electrical Power and Energy Systems, vol. 54, pp. 198-210.