magazinelogo

Journal of Applied Mathematics and Computation

ISSN Print: 2576-0645 Downloads: 168161 Total View: 1933653
Frequency: quarterly ISSN Online: 2576-0653 CODEN: JAMCEZ
Email: jamc@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/jamc.2024.03.002

The Uniqueness of Sturm-Liouville Problems on a P-Star Graph

Yuping Wang1, Yan-Hsiou Cheng2, Xianbiao Wei3,*

1Department of Applied Mathematics, Nanjing Forestry University, Nanjing, Jiangsu, China.

2Department of Mathematics and Information Education, National Taipei University of Education, Taipei, Taiwan.

3Department of Mathematics and Physics, Anhui Jianzhu University, Hefei, Anhui, China.

*Corresponding author:Xianbiao Wei

Published: April 22,2024

Abstract

The inverse nodal problem is always an important research topic in mathematics, physics, biology, and many other fields. Such problems have many applications in mathematics and natural science. In this paper, we study the uniqueness of Sturm-Liouville equations on a p-star graph from paired-dense nodal data. Firstly, we   establish some general uniqueness theorems on the componentfor  , and show that the component up to a constant for the above problem can be uniquely determined by the paired-dense nodal subsets corresponding to a number of subsequences of eigenvalus in adjacent or, intersecting subintervals having the central vertex under some conditions. Then, without any nodal data on some component , adding some information on eigenvalues, we can also recover the other component up to a constant from paired-dense nodal data. It is interesting that the length of each subinterval on each edge may be arbitrarily small.

References

[1] Bondarenko, N.P. (2018). A partial inverse problem for the Sturm-Liouville operator on a star-shaped graph. Anal. Math. Phy., 8, 155-168.

[2] Cheng,Y.H., Law, C.K.J. (2000). Remarks on a new inverse nodal problem. J. Math. Anal. Appl., 248, 145-155.

[3] Cheng,Y.H. (2012). Reconstruction of the Sturm-Liouville operator on a p-star graph with nodal data. Rocky Mt. J. Math., 42(5), 1431-1446.

[4] Currie, S., Watson, B.A. (2007). Inverse nodal problems for Sturm-Liouville equations on graphs. Inverse Problems, 23, 2029-2040.

[5] Gesztesy, F., Simon, B. (2000). Inverse spectral analysis with partial information on the potential II: The case of discrete spectrum, Trans. Amer. Math. Soc., 352, 2765-2787.

[6] Guo,Y., Wei, G. (2019). The sharp conditions of the uniqueness for inverse nodal problems. J. Diff. Equ., 266, 4432-4449.

[7] Kuchment, P., Post, O. (2007). On the spectra of carbon nano-structures. Comm. Math. Phys., 275, 805-826.

[8] Hald, O.H., McLaughlin, J.R. (1989). Solutions of inverse nodal problems. Inverse Problems, 5, 307-347.

[9] Horváth, M. (2001). On the inverse spectral theory of Schrödinger and Dirac operators. Trans.Amer. Math. Soc., 353, 4155-4171.

[10] Levinson, N. (1940). Gap and density theorems, AMS Coll. Publ., New York.

[11] Levin, B.Ja. (1956). Distribution of zeros of entire functions (in Russian). GITTL, Moscow,.

[12] McLaughlin, J.R. (1988). Inverse spectral theory using nodal points as data-a uniqueness result. J. Diff. Equ., 73, 354-362.

[13] Wang,Y.P., Shieh,C.-T. (2021). Inverse problems for Sturm-Liouville operators on a compact equilateral graph by partial nodal data. Math. Meth. Appl. Sci., 44, 693-704.

[14] Wang, Y.P., Shieh, C.-T., Wei, X. (2020). Partial inverse nodal problems for differential pencils on a star-shaped graph. Math. Meth. Appl. Sci., 43(15), 8841-8855.

[15] Wei, X., Cheng, Y.H., Wang, Y.P. (2022). The Partial Inverse Spectral and Nodal Problems for Sturm-Liouville Operators on a Star-Shaped Graph. Mathematics, 10, 3971. https://doi.org/10.3390/math10213971.

[16] Yang, C.-F., Guan, S.-Y. (2021). Reconstruction of the Sturm-Liouville operator on a graph from subinterval nodes. Taiwanese J. Math., 25(5), 1041-1052.

[17] Yang, X.F. (2001). A new inverse nodal problem. J. Diff. Equ., 169(2), 633-653.

[18] Yurko, V.A. (2008). Inverse nodal problems for Sturm-Liouville operators on star-type graphs. J. Inverse Ill-Posed Problems, 16, 715-722.

[19] Freiling, G., Yurko, V.A. (2001). Inverse Sturm-Liouville Problems and their Applications. New York: Nova Science Publishers.

How to cite this paper

The Uniqueness of Sturm-Liouville Problems on a P-Star Graph

How to cite this paper: Yuping Wang, Yan-Hsiou Cheng, Xianbiao Wei. (2024) The Uniqueness of Sturm-Liouville Problems on a P-Star GraphJournal of Applied Mathematics and Computation8(1), 7-15.

DOI: http://dx.doi.org/10.26855/jamc.2024.03.002