References
[1] Adamson, M. W. and Morozov, A. Y. (2012) Revising the role of species mobility in maintaining biodiversity in communities with cyclic competition. Bull. Math. Bid.,74, 2004-2031.
[2] Deimling, K. (1988) Nonlinear Functional Analysis. II, Harcourt/Academic, Springer-Verlay, Berlin.
[3] Fang, J., Peng, R. and Zhao, X.-Q. (2021). Propagation dynamics of a reaction-diffusion equation in a time-periodic shifting envi-ronment. J. Math. Pures Appl., 147(9), 1-28.
[4] Fang J. and Zhao, X. (2014). Traveling waves for monotone semiflows with weak compactness. SIAM J. Math. Anal., 46, 3678-3704.
[5] Freedman H. and Zhao, X.-Q. (1997). Global asymptotics in some quasimonotone reaction-diffusion systems with delays. J. Differ. Equ., 137, 340-362.
[6] Guo D. and Lakshmikantham, V. (1988). Nonlinear Problems in Abstract Cones. Academic Press, New York.
[7] Hsu, S., Wang, F., and Zhao, X. (2013). Global dynamics of zooplankton and harrnful algae in flowing habitats. J. Differ. Equ., 255, 265-297.
[8] Hess, P. (1991). Periodic-Parabolic Boundary Value: Problems and Positivity. Pitman Res. Notes Math. Ser., vol.247, Longman Scientific and Technical, Harlow, UK.
[9] Hsu, S.-B., Wang, F.-B., and Zhao, X.-Q. (2011). Dynamics of a periodically pulsed bio-reactor model with a hydraulic storage zone. J. Dynam. Differ. Equ., 23, 817-842.
[10] Kelley W. and Peterson, A. (2001). Difference equations, An introduction with applications. Second edition, Harcourt/Academic Press, SanDiego, CA.
[11] Lee, Y. (2001). Multiplicity of positive radial solutions for multiparameter semilinear elliptic system on an annulus. J. Differ. Equ., 174: 420-441.
[12] Leopold, A. (1968). A Sand County Almanac. Oxford University Press, USA, December 1968.
[13] Liang, X., Yi, Y. and Zhao, X. (2006). Spreading speeds and traveling waves for perioodic evolution system. J. Differ. Equ., 231: 57-77.
[14] Li, Y. (2016). Existence of positive solution for the cantilever beam equation with fully nonlinear terms. Nonlinear Anal., 27, 221-237.
[15] Liu, S. and Lou, Y. (2022). Classifying the level set of principal eigenvalue for time-periodic parabolic operators and applications. J. Funct. Anal., 282(4), 109-338.
[16] Li, Y., Liu, Q., and Xie, C. (2003). Semilinear reaction-diffusion system of several components. J. Differ. Equ., 187, 510-519.
[17] Li, F. and Zhao, X.-Q. (2021). Global dynamics of a nonlocal periodic reaction- diffusion model of bluetongue disease. J. Differ. Equ., 272, 127-163.
[18] Lü, H., Yu, H., and Liu, Y. (2005). Positive solution for singular boundary value problems of a coupled system of differential equations. J. Math. Anal. Appl., 302, 14-29.
[19] Lü, D.-F. (2016). Existence and concentration behavior of ground state solution for magnetic nonlinear Choquard equations. Commun. Pure Appl. Anal., 15, 1781-1795.
[20] Liang X. and Zhao, X.-Q. (2007). Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm. Pure Appl. Math., 60, 1-40.
[21] Liu, S., Lou, Y., and Song, P. (2022). A new monotonicity for principal eigenvalues with applications to time-periodic patch models. SIAM J. Appl. Math., 82(2), 567-601.
[22] Lou, Y. and Zhao, X.-Q. (2010). The periodic Ross-Macdonald model with diffusion and advection. Appl. Anal., 89(7), 1067-1089.
[23] Pachepsky, E., Lutscher, F., Nisbet, R., and Lewis, M. A. (2005). Persistence, spread and the drift paradox. Theor. Popul. Biol., 67, 61-73.
[24] Lutscher, F. and Seo, G. (2011). The effect of temporal variability on persistence conditions in rivers. J. Theoret. Biol., 283, 53-59.
[25] Petrovskii, S., Kawasaki, K., Takasu, F., and Shigesada, N. (2001). Dissusive waves, dynamical stabilization and spatio-temporal chaos in a community of three competitive species. Jpn. J. lnd. Appl. Math., 18, 459-481.
[26] Reichel W. and Zou, H. (2000). Non-existence results for semilinear cooperative elliptic system via moving spheres. J. Differ. Equ., 161, 219-243.
[27] Smith, H.-L. (1995). Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Math. Surveys Monogr., vol.41, American Mathematical Society, Providence, RI.
[28] Sun, Y., Liu, L., and Wu, Y. (2017). The existence and uniqueness of positive monotone solution for a class of nonlinear Schrӧdinger equations on infinite domains. J. Comput. Appl. Math., 321, 478-486.
[29] Sun, Y. (2009) Necessary and sufficient condition for the existence of positive solution of a coupled system for elastic beam equa-tions. J. Math. Anal. Appl., 357, 77-88.
[30] Tao, S. and Zhang, Z. (2002). On the existence of explosive solutions for semilinear elliptic problems. Nonlinear Anal., 48, 1043-1050.
[31] Thieme, H.-R. (1979). Asymptotic estimates of the solutions of nonlinear integral equation and asymptotic speeds for the spread of populations. J. Reine Angew. Math., 306, 94-121.
[32] Troy, W.-C. (1981). Symmetry properties in systems of semilinear elliptic equations. J. Differ. Equ., 42: 400-413.
[33] Wang, X., Wu, R., and Zhao, X.-Q. (2022). A reaction-advection-diffusion models of cholera epidemics with seasonality and human behavior change. J. Math. Biol., 84(34), 1-30.
[34] Weinberger, H. (1982). Longtime behavior of a class of biological models. SIAM J. Math. Anal., 13, 353-396.
[35] Yao, Q.-L. (2008). Positive solutions of nonlinear elastic beam equationrigidly fastened on the left and simply supported on the right. Non-linear Anal., 69, 1570-1580.
[36] Yu, X. and Zhao, X. (2015). A periodicreaction-advection-diffusion models for a stream population. J. Differ. Equ., 258,3037-3062.
[37] Zhao, X.-Q. (2003). Dynamical Systems in Population Biology. Springer-Verlag, New York.
[38] F. Zhang, F. and Zhao, X. (2007). A periodic epidemic model in a patchy environment. J. Math. Anal. Appl., 325, 496-516.
[39] Zhang, Z. (2000). A remark on the existence of explosive solution for a class of semilinear elliptic equation. Nonlinear Anal., 41,143-148.
[40] Zheng, S. (1999). Nonexistence of positive solutions to semilinear elliptic system and blow-up estimates for areaction-diffusion system. J. Math. Anal. Appl., 23, 293-311.
[41] H. Zou, H. (2002). A priori estimates for semilinear elliptic system without variational structure and their applications. Math. Ann., 323, 713-735.