magazinelogo

Journal of Applied Mathematics and Computation

ISSN Print: 2576-0645 Downloads: 168168 Total View: 1933707
Frequency: quarterly ISSN Online: 2576-0653 CODEN: JAMCEZ
Email: jamc@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/jamc.2024.03.006

Acceleration of the Iterative Procedure for Correction of Optoacoustic Images

Alexandr G. Rudnitskii

Institute of Hydromechanics, National Academy of Sciences of Ukraine, Kyiv, Ukraine.

*Corresponding author:Alexandr G. Rudnitskii

Published: April 26,2024

Abstract

The main goal of the work was to further improve the efficiency of a numerical algorithm designed to correct artifacts and distortions that arise during image restoration in optical-acoustic tomography problems. The proposed iterative scheme for improving biomedical optoacoustic images is based on Banach's fixed point theorem. The challenge was to determine the fastest and most efficient acceleration method applicable to the developed algorithm. In a numerical optical-acoustic experiment, a biological environment with a reconstructed object built into it was simulated. The simulations were run for two-dimensional and three-dimensional numerical models to study the effectiveness of the proposed algorithms. The quality of the reconstruction was determined by both quantitative and visual assessments of the results obtained. The convergence of different acceleration methods and the quality of the output images were analyzed in terms of PSNR (peak signal-to-noise ratio) and SSIM (structure similarity index).

References

[1] M. Sandbichler, F. Krahmer, T. Berer, P. Burgholzer, and M. Haltmeier. (2015). A Novel Compressed Sensing Scheme for Photoacoustic Tomography SIAM J. Appl. Math., 75 (6), 2475-2494.

[2] A. G. Rudnitskii. (2022) Iterative Image Correction Scheme for Optoacoustic Tomography. Acoustical Physics, 68, N4, pp.395-402.

[3] V. E. Gusev and A. A. Karabutov. Laser Optical Acoustics (Nauka, Moscow, 1991) [in Russian].

[4] T. D. Khokhlova, I. M. Pelivanov, and A. A. Karabutov. (2009). Methods of optoacoustic diagnostics of biological tissues Acoust. Phys., 55, 674-684.

[5] Rosenthal A., Ntziachristos V., Razansky D. (2013). Acoustic inversion in optoacoustic tomography: A review. // Current medical imaging reviews, 9. No. 4, 318-336.

[6] Kuchment P, Kunyansky L. (2009). Mathematics of photoacoustic and thermoacoustic tomography. Handbook of Mathematical Methods in Imaging Springer, 819-861.

[7] Banach, Stefan (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3: 133-181. doi:10.4064/fm-3-1-133-181.

[8] V. Berinde. (2007). Iterative Approximation of Fixed Points (Springer, 2007).

[9] Steffensen, I.F. (1933). Remarks on Iteration. Scandinavian Actuarial Journal, 1933, 64-72. 

https://doi.org/10.1080/03461238.1933.10419209.

[10] Guang Deng, Fernando Galetto. Fast iterative reverse filters using fixed-point acceleration. Signal, Image and Video Processing. https://doi.org/10.1007/s11760-023-02584-1.

[11] D. G. Anderson. (1965). Iterative procedures for nonlinear integral equations. Journal of the ACM (JACM), 12, N. 4 . 547-560.

[12] https://ctk.math.ncsu.edu/TALKS/Anderson. pdf.

[13] F. J. Galetto, G. Deng, (2022). Fast image reverse filters through fixed point and gradient descent acceleration. arXiv:2206.10124v1 [eess.IV] 21 Jun 2022.

[14] Claude Lemarechal. (2012). Cauchy and the Gradient Method Doc. Math. Extra., 251-254.

[15] M. J. Kochenderfer, T. A. Wheeler. (2019). Optimization algorithms. MIT Press. 

[16] F. J. Galetto, G. Deng. (2021). Reverse image filtering using total derivative approximation and accelerated gradient descent. arXiv preprint arXiv: 2112.04121, 2021.

[17] S. M. Spann, K. S. Kazimierski, C. S. Aigner, M. Kraiger, K. Bredies, and R. Stollberger. (2017). Spatio-temporal TGV denoising for ASL perfusion imaging. NeuroImage, 2017. Aug 15:157:81-96. doi: 10.1016/j.neuroimage.2017.05.054. Epub 2017 May 27.

[18] Z. Wang, A. C. Bovik. (2009). Mean squared error: Love it or leave it? a new look at signal fidelity measures. IEEE Signal Processing Magazine, 26(1):98-117.

[19] Wang Zhou, Bovik, Alan C., Sheikh, Hamid R., Simoncelli, Eero P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 2004.Vol. 13, No. 4, pp. 600-612.

[20] B. E. Treeby. (2013). IEEE Trans. Ultrason., Ferroelectr., Freq. Control, No. 10, 2208.

How to cite this paper

Acceleration of the Iterative Procedure for Correction of Optoacoustic Images

How to cite this paper: Alexandr G. Rudnitskii. (2024) Acceleration of the Iterative Procedure for Correction of Optoacoustic ImagesJournal of Applied Mathematics and Computation8(1), 50-58.

DOI: http://dx.doi.org/10.26855/jamc.2024.03.006