magazinelogo

Journal of Applied Mathematics and Computation

ISSN Print: 2576-0645 Downloads: 168163 Total View: 1933665
Frequency: quarterly ISSN Online: 2576-0653 CODEN: JAMCEZ
Email: jamc@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/jamc.2024.03.007

Dynamic Modeling and Simulation of Mobile Robot Under Disturbances and Obstacles in an Environment

Vesna Knights1,*, Olivera Petrovska2

1Faculty of Technology and Technical Science, University “St. Kliment Ohridski”, Bitola, Republic of North Macedonia.

2Faculty of Technical Science, Mother Teresa University, Skopje, Republic of North Macedonia.

*Corresponding author:Vesna Knights

Published: April 26,2024

Abstract

This paper aims to develop a mathematical model of a mobile robot, utilizing a deductive approach to create a versatile model applicable to various tasks and adjusted for specific scenarios. The study employed dynamic modeling and simulation analysis to investigate the posture stabilization of a mobile humanoid upper-body robot amidst diverse disturbances and cart movements. Control strategies were implemented, and simulations were conducted using MATLAB to assess the robot's stability and performance under various scenarios. The findings demonstrate the robot's successful navigation through various obstacle configurations, albeit encountering challenges at higher speeds. The study emphasizes the relevance of mobile robots in human-centered environments, underscoring the importance of balance, stability, and accuracy in robot functioning. This research provides new insights and directions for future studies in the field of mobile robotics. It highlights the practical implications of developing humanoid robots capable of navigating complex environments, contributing to advancements in service robotics. By developing a mathematical model and simulating the performance of a wheeled humanoid robot in obstacle environments, this study offers original contributions to the literature. It underscores the significance of addressing challenges related to robot posture, robustness, and obstacle avoidance in enhancing the functionality of humanoid robots in real-world applications.

References

[1] Licardo, J. T., Domjan, M., & Orehovački, T. (2024). Intelligent Robotics—A Systematic Review of Emerging Technologies and Trends. Electronics, 13(3), 542. https://doi.org/10.3390/electronics13030542.

[2] Jánoš, R., Sukop, M., Semjon, J., Tuleja, P., Marcinko, P., Kočan, M., Grytsiv, M., Vagaš, M., Miková, Ľ., & Kelemenová, T. (2022). Stability and Dynamic Walk Control of Humanoid Robot for Robot Soccer Player. Machines, 10(6), 463

https://doi.org/10.3390/machines10060463.

[3] Zhong, J., Ling, C., Cangelosi, A., Lotfi, A., & Liu, X. (2021). On the Gap between Domestic Robotic Applications and Computational Intelligence. Electronics, 10(7), 793. https://doi.org/10.3390/electronics10070793.

[4] Potkonjak, Veljko. (2020). Is Artificial Man Still Far Away: Anthropomimetic Robots Versus Robomimetic Humans. Robotics 9, no. 3: 57. https://doi.org/10.3390/robotics9030057.

[5] Antoska-Knights V, Gacovski Z, Stojce Deskovski S. (2017). Obstacles Avoidance Algorithm for Mobile Robots, Using the Potential Fields Method. Universal Journal of Electrical and Electronic Engineering, 5(4), 75-84. doi: 10.13189/ujeee.2017.050402,

[6] Ngwenya, T., Ayomoh, M., & Yadavalli, S. (2022). Virtual Obstacles for Sensors Incapacitation in Robot Navigation: A Systematic Review of 2D Path Planning. Sensors (Basel, Switzerland), 22(18), 6943. https://doi.org/10.3390/s22186943,

[7] Jin, J., & Chung, W. (2019). Obstacle Avoidance of Two-Wheel Differential Robots Considering the Uncertainty of Robot Motion on the Basis of Encoder Odometry Information. Sensors, 19(2), 289. https://doi.org/10.3390/s19020289,

[8] Moharam Habibnejad Korayem, H.N. Rahimi, A. Nikoobin. (2012). Mathematical modeling and trajectory planning of mobile manipulators with flexible links and joints. Applied Mathematical Modelling, 36(7), 3229-3244. 

https://doi.org/10.1016/j.apm.2011.10.002

[9] Liang, C.J., & Cheng, M. H. (2023). Trends in Robotics Research in Occupational Safety and Health: A Scientometric Analysis and Review. International Journal of Environmental Research and Public Health, 20(10), 5904. 

https://doi.org/10.3390/ijerph20105904,

[10] Berx, N., Adriaensen, A., Decré, W., & Pintelon, L. (2022). Assessing System-Wide Safety Readiness for Successful Human–Robot Collaboration Adoption. Safety, 8(3), 48. https://doi.org/10.3390/safety8030048,

[11] Antoska Knights, V., Stankovski, M., Nusev, S., Temeljkovski, D., & Petrovska, O. (2015). Robots for safety and health at work. Mechanical Engineering – Scientific Journal, 33 (3), 275-279.

[12] Antoska Knights, V., & Gacovski, Z. (2024). Methods for Detection and Prevention of Vulnerabilities in the IoT (Internet of Things) Systems. IntechOpen. doi: 10.5772/intechopen.113898.

[13] Antoska Knights V., Gacovski Z., Deskovski S., & Olivera Petrovska. (2018). Guidance and Control System for Platoon of Au-tonomous Mobile Robot. Journal of Electrical Engineering, 6(5), 281-288. doi: 10.17265/2328-2223/2018.05.000.

[14] Potkonjak V, Vukobratovic M, Babkovic K, Borovac B. (2007). Simulation Model of General Human and Humanoid Motion. Multibody System Dynamics, 2007; 17(1):71-96.

[15] Holland, O., & Knight, R. (2006). The Anthropomimetic Principle. In Proc. of the Symposium on Biologically Inspired Robotics edited by J. Burn and M. Wilson (AISB06), Bristol, UK.

[16] Antoska, V., Jovanović, K., Petrović VM, Baščarević N, Stankovski M. (2013). Balance Analysis of the Mobile Anthropomimetic Robot Under Disturbances – ZMP Approach. International Journal of Advanced Robotic Systems, 10(4). doi:10.5772/56238.

[17] Antoska-Knights V, Gacovski Z, Deskovski S. Obstacles Avoidance Algorithm for Mobile Robots, Using the Potential Fields Method. Universal Journal of Electrical and Electronic Engineering, 2017;5(4):75-84. DOI: 10.13189/ujeee.2017.050402.

[18] Kaur, A., Guo, T., Wang, J., Wang, Z., Chen, W., Chen, G., & Zhang, S. (2022). Research on Path Planning of Mobile Robot with a Novel Improved Artificial Potential Field Algorithm. Mathematical Problems in Engineering, 2022, 5692350.

https://doi.org/10.1155/2022/5692350.

[19] Yang, L., Li, P., Qian, S., Quan, H., Miao, J., Liu, M., Hu, Y., & Memetimin, E. (2023). Path Planning Technique for Mobile Robots: A Review. Machines, 11, 980. https://doi.org/10.3390/machines11100980.

[20] Vukobratovic, M., Frank, A., & Juricic, D. (1970). On the stability of biped locomotion. IEEE Transaction on Biomedical Engi-neering, 17, 25-36.

[21] Kim, J., & Chung, W. (2002). Real-time ZMP Compensation Method using Null Motion for Mobile Manipulators. Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, DC, USA (Vol. 2, pp. 1967-1972). 

[22] Vukobratovic, M., & Borovac, B. (2004). Zero-Moment Point—Thirty Five Years of its Life. International Journal of Humanoid Robotics, 1(1), 157–173. 

[23] Wang, J., & Li, Y. (2009). Static Force Analysis for a Mobile Humanoid Robot Moving on a Slope. In IEEE International Conference on Robotics and Biomimetics (ROBIO08), Bangkok, Thailand (pp. 371-376).

[24] Wang, J., Li, Y., & Qiu, C. (2009). Analysis of Dynamic Stability Constraints for a Mobile Humanoid Robot. In IEEE International Conference on Robotics and Biomimetics (ROBIO08), Bangkok, Thailand (pp. 639-644).

[25] Razzaghi, P., Al Khatib, E., & Hurmuzlu, Y. (2019). Nonlinear dynamics and control of an inertially actuated jumper robot. Nonlinear Dynamics, 97, 161-176.

[26] Chignoli, M., Kim, D., Stanger-Jones, E., & Kim, S. (2021). The MIT Humanoid Robot: Design, Motion Planning, and Control for Acrobatic Behaviors. arXiv, arXiv:2104.09025.

[27] Han, KC., Kim, JY. (2003). Posture stabilizing control of quadruped robot based on cart-inverted pendulum model. Intel Serv Robotics 16, 521-536 (2023). https://doi.org/10.1007/s11370-023-00480-8.

[28] Yoshikawa N, Suzuki Y, Kiyono K, & Nomura T. (2016). Intermittent Feedback-Control Strategy for Stabilizing Inverted Pendulum on Manually Controlled Cart as Analogy to Human Stick Balancing. Front. Comput. Neurosci., 10:34. 

doi: 10.3389/fncom.2016.00034.

[29] Morasso P, Nomura T, Suzuki Y, & Zenzeri J. (2019). Stabilization of a Cart Inverted Pendulum: Improving the Intermittent Feedback Strategy to Match the Limits of Human Performance. Front. Comput. Neurosci., 13:16. doi: 10.3389/fncom.2019.00016. 

[30] Borkar, Kailash Kumar, Turki Aljrees, Saroj Kumar Pandey, Ankit Kumar, Mukesh Kumar Singh, Anurag Sinha, Kamred Udham Singh, and Vandana Sharma. (2023). Stability Analysis and Navigational Techniques of Wheeled Mobile Robot: A Review. Processes 11, no. 12: 3302. https://doi.org/10.3390/pr11123302.

[31] Jeong, JS., Sohn, JH. (2023). Analysis of Mobile Robot Stability Through 3D Dynamics and Lumped Parameter Tire Modeling. Int. J. Precis. Eng. Manuf., 24, 1577-1585. https://doi.org/10.1007/s12541-023-00884-7.

[32] Papenmeier, F., Uhrig, M., & Kirsch, A. (2019). Human Understanding of Robot Motion: The Role of Velocity and Orientation. International Journal of Social Robotics, 11, 75-88. https://doi.org/10.1007/s12369-018-0493-4.

[33] Patil, S., Vasu, V., & Srinadh, K. V. S. (2023). Advances and perspectives in collaborative robotics: a review of key technologies and emerging trends. Discovery in Mechanical Engineering, 2(13). https://doi.org/10.1007/s44245-023-00021-8.

How to cite this paper

Dynamic Modeling and Simulation of Mobile Robot Under Disturbances and Obstacles in an Environment

How to cite this paper: Vesna Knights, Olivera Petrovska. (2024) Dynamic Modeling and Simulation of Mobile Robot Under Disturbances and Obstacles in an EnvironmentJournal of Applied Mathematics and Computation8(1), 59-67.

DOI: http://dx.doi.org/10.26855/jamc.2024.03.007