References
[1] Licardo, J. T., Domjan, M., & Orehovački, T. (2024). Intelligent Robotics—A Systematic Review of Emerging Technologies and Trends. Electronics, 13(3), 542. https://doi.org/10.3390/electronics13030542.
[2] Jánoš, R., Sukop, M., Semjon, J., Tuleja, P., Marcinko, P., Kočan, M., Grytsiv, M., Vagaš, M., Miková, Ľ., & Kelemenová, T. (2022). Stability and Dynamic Walk Control of Humanoid Robot for Robot Soccer Player. Machines, 10(6), 463
https://doi.org/10.3390/machines10060463.
[3] Zhong, J., Ling, C., Cangelosi, A., Lotfi, A., & Liu, X. (2021). On the Gap between Domestic Robotic Applications and Computational Intelligence. Electronics, 10(7), 793. https://doi.org/10.3390/electronics10070793.
[4] Potkonjak, Veljko. (2020). Is Artificial Man Still Far Away: Anthropomimetic Robots Versus Robomimetic Humans. Robotics 9, no. 3: 57. https://doi.org/10.3390/robotics9030057.
[5] Antoska-Knights V, Gacovski Z, Stojce Deskovski S. (2017). Obstacles Avoidance Algorithm for Mobile Robots, Using the Potential Fields Method. Universal Journal of Electrical and Electronic Engineering, 5(4), 75-84. doi: 10.13189/ujeee.2017.050402,
[6] Ngwenya, T., Ayomoh, M., & Yadavalli, S. (2022). Virtual Obstacles for Sensors Incapacitation in Robot Navigation: A Systematic Review of 2D Path Planning. Sensors (Basel, Switzerland), 22(18), 6943. https://doi.org/10.3390/s22186943,
[7] Jin, J., & Chung, W. (2019). Obstacle Avoidance of Two-Wheel Differential Robots Considering the Uncertainty of Robot Motion on the Basis of Encoder Odometry Information. Sensors, 19(2), 289. https://doi.org/10.3390/s19020289,
[8] Moharam Habibnejad Korayem, H.N. Rahimi, A. Nikoobin. (2012). Mathematical modeling and trajectory planning of mobile manipulators with flexible links and joints. Applied Mathematical Modelling, 36(7), 3229-3244.
https://doi.org/10.1016/j.apm.2011.10.002
[9] Liang, C.J., & Cheng, M. H. (2023). Trends in Robotics Research in Occupational Safety and Health: A Scientometric Analysis and Review. International Journal of Environmental Research and Public Health, 20(10), 5904.
https://doi.org/10.3390/ijerph20105904,
[10] Berx, N., Adriaensen, A., Decré, W., & Pintelon, L. (2022). Assessing System-Wide Safety Readiness for Successful Human–Robot Collaboration Adoption. Safety, 8(3), 48. https://doi.org/10.3390/safety8030048,
[11] Antoska Knights, V., Stankovski, M., Nusev, S., Temeljkovski, D., & Petrovska, O. (2015). Robots for safety and health at work. Mechanical Engineering – Scientific Journal, 33 (3), 275-279.
[12] Antoska Knights, V., & Gacovski, Z. (2024). Methods for Detection and Prevention of Vulnerabilities in the IoT (Internet of Things) Systems. IntechOpen. doi: 10.5772/intechopen.113898.
[13] Antoska Knights V., Gacovski Z., Deskovski S., & Olivera Petrovska. (2018). Guidance and Control System for Platoon of Au-tonomous Mobile Robot. Journal of Electrical Engineering, 6(5), 281-288. doi: 10.17265/2328-2223/2018.05.000.
[14] Potkonjak V, Vukobratovic M, Babkovic K, Borovac B. (2007). Simulation Model of General Human and Humanoid Motion. Multibody System Dynamics, 2007; 17(1):71-96.
[15] Holland, O., & Knight, R. (2006). The Anthropomimetic Principle. In Proc. of the Symposium on Biologically Inspired Robotics edited by J. Burn and M. Wilson (AISB06), Bristol, UK.
[16] Antoska, V., Jovanović, K., Petrović VM, Baščarević N, Stankovski M. (2013). Balance Analysis of the Mobile Anthropomimetic Robot Under Disturbances – ZMP Approach. International Journal of Advanced Robotic Systems, 10(4). doi:10.5772/56238.
[17] Antoska-Knights V, Gacovski Z, Deskovski S. Obstacles Avoidance Algorithm for Mobile Robots, Using the Potential Fields Method. Universal Journal of Electrical and Electronic Engineering, 2017;5(4):75-84. DOI: 10.13189/ujeee.2017.050402.
[18] Kaur, A., Guo, T., Wang, J., Wang, Z., Chen, W., Chen, G., & Zhang, S. (2022). Research on Path Planning of Mobile Robot with a Novel Improved Artificial Potential Field Algorithm. Mathematical Problems in Engineering, 2022, 5692350.
https://doi.org/10.1155/2022/5692350.
[19] Yang, L., Li, P., Qian, S., Quan, H., Miao, J., Liu, M., Hu, Y., & Memetimin, E. (2023). Path Planning Technique for Mobile Robots: A Review. Machines, 11, 980. https://doi.org/10.3390/machines11100980.
[20] Vukobratovic, M., Frank, A., & Juricic, D. (1970). On the stability of biped locomotion. IEEE Transaction on Biomedical Engi-neering, 17, 25-36.
[21] Kim, J., & Chung, W. (2002). Real-time ZMP Compensation Method using Null Motion for Mobile Manipulators. Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, DC, USA (Vol. 2, pp. 1967-1972).
[22] Vukobratovic, M., & Borovac, B. (2004). Zero-Moment Point—Thirty Five Years of its Life. International Journal of Humanoid Robotics, 1(1), 157–173.
[23] Wang, J., & Li, Y. (2009). Static Force Analysis for a Mobile Humanoid Robot Moving on a Slope. In IEEE International Conference on Robotics and Biomimetics (ROBIO08), Bangkok, Thailand (pp. 371-376).
[24] Wang, J., Li, Y., & Qiu, C. (2009). Analysis of Dynamic Stability Constraints for a Mobile Humanoid Robot. In IEEE International Conference on Robotics and Biomimetics (ROBIO08), Bangkok, Thailand (pp. 639-644).
[25] Razzaghi, P., Al Khatib, E., & Hurmuzlu, Y. (2019). Nonlinear dynamics and control of an inertially actuated jumper robot. Nonlinear Dynamics, 97, 161-176.
[26] Chignoli, M., Kim, D., Stanger-Jones, E., & Kim, S. (2021). The MIT Humanoid Robot: Design, Motion Planning, and Control for Acrobatic Behaviors. arXiv, arXiv:2104.09025.
[27] Han, KC., Kim, JY. (2003). Posture stabilizing control of quadruped robot based on cart-inverted pendulum model. Intel Serv Robotics 16, 521-536 (2023). https://doi.org/10.1007/s11370-023-00480-8.
[28] Yoshikawa N, Suzuki Y, Kiyono K, & Nomura T. (2016). Intermittent Feedback-Control Strategy for Stabilizing Inverted Pendulum on Manually Controlled Cart as Analogy to Human Stick Balancing. Front. Comput. Neurosci., 10:34.
doi: 10.3389/fncom.2016.00034.
[29] Morasso P, Nomura T, Suzuki Y, & Zenzeri J. (2019). Stabilization of a Cart Inverted Pendulum: Improving the Intermittent Feedback Strategy to Match the Limits of Human Performance. Front. Comput. Neurosci., 13:16. doi: 10.3389/fncom.2019.00016.
[30] Borkar, Kailash Kumar, Turki Aljrees, Saroj Kumar Pandey, Ankit Kumar, Mukesh Kumar Singh, Anurag Sinha, Kamred Udham Singh, and Vandana Sharma. (2023). Stability Analysis and Navigational Techniques of Wheeled Mobile Robot: A Review. Processes 11, no. 12: 3302. https://doi.org/10.3390/pr11123302.
[31] Jeong, JS., Sohn, JH. (2023). Analysis of Mobile Robot Stability Through 3D Dynamics and Lumped Parameter Tire Modeling. Int. J. Precis. Eng. Manuf., 24, 1577-1585. https://doi.org/10.1007/s12541-023-00884-7.
[32] Papenmeier, F., Uhrig, M., & Kirsch, A. (2019). Human Understanding of Robot Motion: The Role of Velocity and Orientation. International Journal of Social Robotics, 11, 75-88. https://doi.org/10.1007/s12369-018-0493-4.
[33] Patil, S., Vasu, V., & Srinadh, K. V. S. (2023). Advances and perspectives in collaborative robotics: a review of key technologies and emerging trends. Discovery in Mechanical Engineering, 2(13). https://doi.org/10.1007/s44245-023-00021-8.