References
[1]
Hentze, M. W.,
Muckenthaler, M. U. & Andrews, N. C. (2004). Balancing acts:
molecular control of mammalian iron metabolism. Cell, 117, 285-297.
[2]
Liao, G.,
Xiang, J., Huang, X. & Yang, Y. (2012). A New
“Mix-confined” Repeated Load Test for Evaluating Permanent Deformation of Asphalt Mixture. Journal
of Testing and Evaluation, 40, 1177-1185.
[3]
Roy, A.,
Kucukural, A. & Zhang, Y. (2010). I-TASSER: a
unified platform for automated protein structure and function prediction. Nature protocols,
5, 725.
[4]
Tim Goodnough L., Comin-Colet J., Leal-Noval S., et al. (2017).
Management of
anemia in patients with congestive heart failure. Am J Hematol. 92(1): 88-93.
[5]
Muckenthaler M. U., Rivella S., Hentze M. W., Galy B. (2017). A red carpet
for iron metabolism. Cell. 168(3): 344-361.
[6]
Canali S., Core A. B., Zumbrennen-Bullough K. B., et al. (2016).
Activin
B induces noncanonical SMAD1/5/8 signaling via BMP type i receptors in
hepatocytes: evidence for a role in hepcidin induction by inflammation in male
mice. Endocrinology.
157(3): 1146-1162.
[7]
Nemeth, E.,
Tuttle, M. S., Powelson, J., Vaughn, M. B., Donovan, A., Ward, D. M., Ganz, T.
& Kaplan, J. (2004). Hepcidin
regulates cellular iron efflux by binding to ferroportin and inducing its
internalization. Science, 306, 2090-2093.
[8]
Nemeth, E.
& Ganz, T. (2009). The role of
hepcidin in iron metabolism. Acta
haematologica, 122, 78-86.
[9]
Aschemeyer S.,
Qiao B.,
Stefanova D.,
et al. (2018).
Structure-function
analysis of ferroportin defines the binding site and an alternative mechanism
of action of hepcidin. Blood.
131(8): 899-910.
[10]
Hunter, H. N.,
Fulton, D. B., Ganz, T. & Vogel, H. J. (2002). The solution structure of human hepcidin, a peptide hormone with
antimicrobial activity that is involved in iron uptake and hereditary
hemochromatosis. Journal of Biological
Chemistry, 277, 37597-37603.
[11]
Taga, T., Hibi,
M., Hirata, Y., Yamasaki, K., Yasukawa, K., Matsuda, T., Hirano, T. &
Kishimoto, T. (1989). Interleukin-6
triggers the association of its receptor with a possible signal transducer,
gp130. Cell, 58, 573-581.
[12]
Hirano, T.,
Akira, S., Taga, T. & Kishimoto, T. (1990). Biological
and clinical aspects of interleukin 6. Immunology
today, 11, 443-449.
[13]
Nishimoto, N.
& Kishimoto, T. (2006). Interleukin
6: from bench to bedside. Nature Reviews
Rheumatology, 2, 619.
[14]
Solak A. A.,
SöDERKVIST, B. K., MEDIN, C., HYLANDER, B. & HEIWE, S. (2012). Health-related quality of life in different stages of chronic kidney disease and at initiation of
dialysis treatment. Health and quality of
life outcomes, 10, 71.
[15]
Nairz M., Theurl I., Swirski F.
K., Weiss G.
(2017).
“Pumping
iron”-how macrophages handle iron at the systemic, microenvironmental, and cellular levels. Pflugers Arch., 469(3-4): 397-418.
[16]
Theurl I., Hilgendorf I., Nairz M., et al. (2016).
On-demand
erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med. 22(8): 945-951.
[17]
Khalil S., Delehanty L., Grado S, et
al. (2018).
Iron modulation
of erythropoiesis is associated with Scribble-mediated control of the
erythropoietin receptor. J Exp Med,
215(2): 661-679.
[18]
Zhang S., Macias-Garcia A., Velazquez J., Paltrinieri E., Kaufman R. J., Chen J. J. (2018). HRI coordinates
translation by eIF2αP and mTORC1 to mitigate ineffective erythropoiesis in mice
during iron deficiency. Blood. 131(4): 450-461.
[19]
Latour C, Wlodarczyk MF, Jung G, et al. (2017).
Erythroferrone
contributes to hepcidin repression in a mouse model of malarial anemia. Haematologica, 102(1): 60-68.
[20]
Docherty A. B., Turgeon A. F., Walsh T. S. (2018). Best practice
in critical care: anaemia in acute and critical illness. Transfus Med. 28(2): 181-189.
[21]
Xu, J. Q., Mattock,
M., Chusney, G. & Burt, D. (1997). NIDDM as a
disease of the innate immune system: association of acute-phase reactants and
interleukin-6 with metabolic syndrome X. Diabetologia,
40, 1286.
[22]
Travis, S.,
González-Quintela, A., Campos, J., Quinteiro, C., Domínguez, F. & Loidi, L.
(2010). Genetic study
of the hepcidin gene (HAMP) promoter and functional analysis of the c.-582A>
G variant. BMC genetics, 11, 110.