magazinelogo

International Journal of Clinical and Experimental Medicine Research

ISSN Print: 2575-7989 Downloads: 205588 Total View: 2416353
Frequency: quarterly ISSN Online: 2575-7970 CODEN: IJCEMH
Email: ijcemr@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/ijcemr.2020.07.001

Interleukin-6 (-174 G/C) and Hepcidin HAMP (-582A/G) Gene Polymorphisms among Sudanese Patients with Anemia of Chronic Kidney Disease Treated with Erythropoietin

Khalid Mohamed Khalid Elhussain 1,2,3,*, Amged Husssen Abdelrhman 1, Enaam Abdelrhman Abdelgadir 4

1 Department of Hematology and Immunohematology, Omdurman Islamic University, Sudan.

2 Omdurman Ahlia University, Faulty of Medicine, Sudan.

3 International University of Africa, Faculty of Medical Laboratory Sciences, Sudan.

4 Head Department of Pathology, Faculty of Medicine, Al-Neelain University, Sudan.

*Corresponding author: Khalid Mohamed Khalid Elhussain

Published: June 2,2020

Abstract

Objectives. This is a case controls study used to determine the frequency of Interleukin-6 (-174 G/C) and hepcidin HAMP (-582A/G) gene polymorphisms among Sudanese patients with anemia of chronic kidney disease treated with erythropoietin by using the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR/RFLP). Results. Significantly decreased levels in RBCS profile: RBCs count, Hb and PCVin patients with CKD and RBCS  profile were observed. The polymorphisms (SNP) of the IL-6 gene and hepcidin (HAMP) gene promoter in Sudanese patients with ACKD were showed. the IL-6 (-174G/C) (SNP) was present in the hepcidin HAMP (-582A/G) (SNP) AA genotype 70 (35%), AG 23 (11.5) and GG 7 (3.5%) in 100 patients dialysis dependent and AA 166 (41.5%), AG 34 (8.5%) and GG 0 (0%) in 200 control subjects, and the allele A are more frequent in patients affected by ACKD.

References

[1]       Hentze, M. W., Muckenthaler, M. U. & Andrews, N. C. (2004). Balancing acts: molecular control of mammalian iron metabolism. Cell, 117, 285-297.

[2]       Liao, G., Xiang, J., Huang, X. & Yang, Y. (2012). A New “Mix-confined” Repeated Load Test for Evaluating Permanent Deformation of Asphalt Mixture. Journal of Testing and Evaluation, 40, 1177-1185.

[3]       Roy, A., Kucukural, A. & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nature protocols, 5, 725.

[4]       Tim Goodnough L., Comin-Colet J., Leal-Noval S., et al. (2017). Management of anemia in patients with congestive heart  failure. Am J Hematol. 92(1): 88-93.

[5]       Muckenthaler M. U., Rivella S., Hentze M. W., Galy B. (2017). A red carpet for iron metabolism. Cell. 168(3): 344-361.

[6]       Canali S., Core A. B., Zumbrennen-Bullough K. B., et al. (2016). Activin B induces noncanonical SMAD1/5/8 signaling via BMP type i receptors in hepatocytes: evidence for a role in hepcidin induction by inflammation in male mice. Endocrinology. 157(3): 1146-1162.

[7]       Nemeth, E., Tuttle, M. S., Powelson, J., Vaughn, M. B., Donovan, A., Ward, D. M., Ganz, T. & Kaplan, J. (2004). Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, 306, 2090-2093.

[8]       Nemeth, E. & Ganz, T. (2009). The role of hepcidin in iron metabolism. Acta haematologica, 122, 78-86.

[9]       Aschemeyer S., Qiao B., Stefanova D., et al. (2018). Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin. Blood. 131(8): 899-910.

[10]    Hunter, H. N., Fulton, D. B., Ganz, T. & Vogel, H. J. (2002). The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. Journal of Biological Chemistry, 277, 37597-37603.

[11]    Taga, T., Hibi, M., Hirata, Y., Yamasaki, K., Yasukawa, K., Matsuda, T., Hirano, T. & Kishimoto, T. (1989). Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell, 58, 573-581.

[12]    Hirano, T., Akira, S., Taga, T. & Kishimoto, T. (1990). Biological and clinical aspects of interleukin 6. Immunology today, 11, 443-449.

[13]    Nishimoto, N. & Kishimoto, T. (2006). Interleukin 6: from bench to bedside. Nature Reviews Rheumatology, 2, 619.

[14]    Solak A. A., SöDERKVIST, B. K., MEDIN, C., HYLANDER, B. & HEIWE, S. (2012). Health-related quality of life in different stages of chronic kidney disease and at initiation of dialysis treatment. Health and quality of life outcomes, 10, 71.

[15]    Nairz M., Theurl I., Swirski F. K., Weiss G. (2017). “Pumping iron”-how macrophages handle iron at the systemic, microenvironmental, and cellular levels. Pflugers Arch., 469(3-4): 397-418.

[16]    Theurl I., Hilgendorf I., Nairz M., et al. (2016). On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med. 22(8): 945-951.

[17]    Khalil S., Delehanty L., Grado S, et al. (2018). Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor. J Exp Med, 215(2): 661-679.

[18]    Zhang S., Macias-Garcia A., Velazquez J., Paltrinieri E., Kaufman R. J., Chen J. J. (2018). HRI coordinates translation by eIF2αP and mTORC1 to mitigate ineffective erythropoiesis in mice during iron deficiency. Blood. 131(4): 450-461.

[19]    Latour C, Wlodarczyk MF, Jung G, et al. (2017). Erythroferrone contributes to hepcidin repression in a mouse model of malarial anemia. Haematologica, 102(1): 60-68.

[20]    Docherty A. B., Turgeon A. F., Walsh T. S. (2018). Best practice in critical care: anaemia in acute and critical illness. Transfus Med. 28(2): 181-189.

[21]    Xu, J. Q., Mattock, M., Chusney, G. & Burt, D. (1997). NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia, 40, 1286.

[22]    Travis, S., González-Quintela, A., Campos, J., Quinteiro, C., Domínguez, F. & Loidi, L. (2010). Genetic study of the hepcidin gene (HAMP) promoter and functional analysis of the c.-582A> G variant. BMC genetics, 11, 110.

How to cite this paper

Interleukin-6 (-174 G/C) and Hepcidin HAMP (-582A/G) Gene Polymorphisms among Sudanese Patients with Anemia of Chronic Kidney Disease Treated with Erythropoietin

How to cite this paper: Khalid Mohamed Khalid Elhussain, Amged Husssen Abdelrhman, Enaam Abdelrhman Abdelgadir. (2020) Interleukin-6 (-174 G/C) and Hepcidin HAMP (-582A/G) Gene Polymorphisms among Sudanese Patients with Anemia of Chronic Kidney Disease Treated with Erythropoietin. International Journal of Clinical and Experimental Medicine Research, 4(3), 34-40.

DOI: http://dx.doi.org/10.26855/ijcemr.2020.07.001