magazinelogo

Journal of Applied Mathematics and Computation

ISSN Online: 2576-0653 Downloads: 176587 Total View: 1991924
Frequency: quarterly ISSN Print: 2576-0645 CODEN: JAMCEZ
Email: jamc@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/jamc.2024.06.002

Hopf Bifurcation Research of University Network Public Opinion Propagation Model with Time Delay

Xiuling Li, Huiqin Xu*

College of Applied Mathematics, Jilin University of Finance and Economics, Changchun, Jilin, China.

*Corresponding author:Huiqin Xu

Published: May 23,2024

Abstract

The dissemination of online public opinion in universities has always been a hot topic of concern, mainly revolving around issues such as academic misconduct, ethical conduct of faculty and staff, and campus safety, which are fermenting and spreading within the scope of universities. Strengthening the management of online public opinion in universities, studying the dissemination patterns and development trends of public opinion and rumors, and guiding college students to maintain a firm stance and distinguish right from wrong are of great significance. This article investigates the dynamic behavior of a university network public opinion dissemination model with a time delay. Firstly, the conditions for the existence of a positive equilibrium point in the model were discussed, and the local stability of the equilibrium point was analyzed. Applying the central manifold theorem and regularization theory, the study examined the sufficient conditions for Hopf bifurcation at this equilibrium point. It also discussed the stability and directionality of the periodic solution resulting from the bifurcation. Finally, the theoretical results were validated through numerical simulation, and the conclusions drawn have practical application value, providing a scientific basis for formulating strategies to control the spread of rumors.

References

[1] Honglan Z, Xuebing Z, Ling W. Stability and Hopf Bifurcation Analyses of a Delayed Rumor Spreading Model and Its Discon-tinuous Control [J]. International Journal of Bifurcation and Chaos, 2022, 32(16).

[2] Chunru L, Zujun M. Dynamics Analysis and Optimal Control for a Delayed Rumor-Spreading Model [J]. Mathematics, 2022, 10(19).

[3] Yalin Y, Yuhong S. An uncertain susceptible-infected-against-susceptible rumor spreading model [J]. Computational and Applied Mathematics, 2023, 42(4).

[4] E.A. N, C.R. C. A deterministic model of the spread of scam rumor and its numerical simulations [J]. Mathematics and Computers in Simulation, 2023, 207.

[5] Linhe Z, Xuewei W. Global analysis of a new reaction–diffusion multi-group SVEIR propagation model with time delay [J]. Zeitschrift für angewandte Mathematik und Physik, 2022, 74(1).

[6] Chunru L, Zujun M, Yuanyuan W. Dynamics of a delayed rumor spreading model with discontinuous threshold control [J]. Heliyon, 2022, 8(10).

[7] Jinling W, Haijun J, Cheng H, et al. Stability and Hopf bifurcation analysis of multi-lingual rumor spreading model with nonlinear inhibition mechanism [J]. Chaos, Solitons and Fractals: The Interdisciplinary Journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 2021, 153(P2).

[8] Shuzhen Y, Zhiyong Y, Haijun J, et al. The dynamics and control of 2I2SR rumor spreading models in multilingual online social networks [J]. Information Sciences, 2021, 581.

[9] Yingying C, Liang'an H, Laijun Z. Dynamical behaviors and control measures of rumor-spreading model in consideration of the infected media and time delay [J]. Information Sciences, 2021, 564.

[10] Jiang G, Li S, Li M. Dynamic rumor spreading of public opinion reversal on Weibo based on a two-stage SPNR model [J]. Physi-ca A: Statistical Mechanics and its Applications, 2020, 558.

[11] Zhu L, Huang X.SIS Model of Rumor Spreading in Social Network with Time Delay and Nonlinear Functions [J]. Communications in Theoretical Physics, 2020, 72(01):13-25.

[12] Ruqi L, Yinwei L, Zhongyi M, et al. Rumor Spreading Model Considering Individual Activity and Refutation Mechanism Simultaneously [J]. IEEE Access, 2020, 8.

[13] Tian Y, Ding X. Rumor spreading model with considering debunking behavior in emergencies [J]. Applied Mathematics and Computation, 2019, 363(C).

[14] Zhu L, Liu M, Li Y. The dynamics analysis of a rumor propagation model in online social networks [J]. Physica A: Statistical Mechanics and its Applications, 2019, 520.

How to cite this paper

Hopf Bifurcation Research of University Network Public Opinion Propagation Model with Time Delay

How to cite this paper: Xiuling Li, Huiqin Xu. (2024) Hopf Bifurcation Research of University Network Public Opinion Propagation Model with Time DelayJournal of Applied Mathematics and Computation8(2), 100-112.

DOI: http://dx.doi.org/10.26855/jamc.2024.06.002