References
[1] Farh KK,
Marson A, Zhu J, et al. (2015). Genetic and epigenetic fine mapping of causal
autoimmune disease variants [J]. Nature, 518(7539): 337-343.
[2] Shooshtari
P, Huang H, Cotsapas C. (2017). Integrative Genetic and Epigenetic Analysis
Uncovers Regulatory Mechanisms of Autoimmune Disease [J]. Am J Hum Genet,
101(1): 75-86.
[3] Huntzinger
E, Izaurralde E. (2011). Gene silencing by microRNAs: contributions of
translational repression and mRNA decay [J]. Nat Rev Genet, 12(2): 99-110.
[4] Bartel DP. (2004).
MicroRNAs: genomics, biogenesis, mechanism, and function [J]. Cell, 116(2): 281-297.
[5] Roberts TC.
(2015). The microRNA machinery [J]. Adv Exp Med Biol, 887: 15-30.
[6] Lee RC,
Ambros V. (2001). An extensive class of small RNAs in Caenorhabditis elegans [J].
Science, 294(5543): 862-864.
[7] Bortolin-Cavaille
ML, Dance M, Weber M, et al. (2009). C19MC microRNAs are processed from introns
of large Pol-II, non-protein-coding transcripts [J]. Nucleic Acids Res, 37(10):
3464-3473.
[8] Cai X,
Hagedorn CH, Cullen BR. (2004). Human microRNAs are processed from capped,
polyadenylated transcripts that can also function as mRNAs [J]. RNA, 10(12): 1957-1966.
[9] Ballarino
M, Pagano F, Girardi E, et al. (2009). Coupled RNA processing and transcription
of intergenic primary microRNAs [J]. Mol Cell Biol, 29(20): 5632-5638.
[10] Han J, Lee
Y, Yeom KH, et al. (2004). The Drosha-DGCR8 complex in primary microRNA
processing [J]. Genes Dev, 18(24): 3016-3027.
[11] Baulina NM,
Kulakova OG, Favorova OO. (2016). MicroRNAs: the role in autoimmune
inflammation [J]. Acta Naturae, 8(1): 21-33.
[12] Tam W. (2001).
Identification and characterization of human BIC, a gene on chromosome 21 that
encodes a noncoding RNA [J]. Gene, 22: 274.
[13] Wu XY, Pais
EM, Li Lan, et al. (2017). MicroRNA-155: a Novel Armamentarium Against
Inflammatory Diseases [J]. Inflammation, 40(2): 708-716.
[14] Costinean
S, Zanesi N, Pekarsky Y, et al. (2006). Pre-B cell proliferation and
lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice [J].
Proc Natl Acad Sci USA, 103(18): 7024-7029.
[15] Vigorito E,
Perks KL, Abreu-Goodger C, et al. (2007). microRNA-155 regulates the generation
of immunoglobulin class-switched plasma cells [J]. Immunity, 27(6): 847-859.
[16] Leung WH,
Tarasenko T, Bolland S. (2009). Differential roles for the inositol phosphatase
SHIP in the regulation of macrophages and lymphocytes [J]. Immunol Res,
43(1-3): 243-251.
[17] O’Connell
RM, Chaudhuri AA, Rao DS, et al. (2009). Inositol phosphatase SHIP1 is a
primary target of miR-155 [J]. Proc Natl Acad Sci USA, 106(17): 7113-7118.
[18] Zhang J,
Cheng Y, Cui W, et al. (2014). MicroRNA-155 modulates Th1 and Th17 cell
differentiation and is associated with multiple sclerosis and experimental
autoimmune encephalomyelitis [J]. J Neuroimmunol, 266(1-2), 56-63.
[19] Blüml S,
Bonelli M, Niederreiter B, et al. (2011). Essential role for micro-RNA 155 in
the pathogenesis of autoimmune arthritis in mice [J]. Arthritis Rheum, 63(5): 1281-1288.
[20] Banerjee A,
Schambach F, DeJong CS, et al. (2010). Micro-RNA-155 inhibits IFN-gamma
signaling in CD4+ T cells [J]. Eur J Immunol, 40(1): 225-231.
[21] Escobar T,
Yu CR, Muljo SA, et al. (2013). STAT3 activates miR-155 in Th17 cells and acts
in concert to promote experimental autoimmune uveitis [J]. Invest Ophthalmol
Vis Sci, 54(6): 4017-4025.
[22] Lu LF, Thai
TH, Calado DP, et al. (2009). Foxp3-dependent microRNA155 confers competitive
fitness to regulatory T cells by targeting SOCS1 protein [J]. Immunity, 30(1): 80-91.
[23] Banerjee A,
Schambach F, DeJong CS, et al. (2010). MicroRNAs in the key events of systemic
lupus erythematosus pathogenesis [J]. Eur J Immunol, 40(1): 225-231.
[24] Ceppi M,
Pereira PM, Dunand-Sauthier I, et al. (2009). MicroRNA-155 modulates the
interleukin-1 signaling pathway in activated human monocyte-derived dendritic
cells [J]. Proc Natl Acad Sci USA, 106(8): 2735-2740.
[25] Frisell T,
Hellgren K, Alfredsson L, et al. (2016). Familial aggregation of arthritis-related
diseases in seropositive and seronegative rheumatoid arthritis: a
register-based case-control study in Sweden [J]. Ann Rheum Dis, 75(1): 183-189.
[26] Elmesmari
A, Fraser AR, Wood C et al. (2016). MicroRNA-155 regulates monocyte chemokine
and chemokine receptor expression in Rheumatoid Arthritis [J]. Rheumatology (Oxford),
55(11): 2056-2065.
[27] Li X, Tian
F, Wang F. (2013). Rheumatoid arthritis-associated microRNA-155 targets SOCS1
and upregulates TNF-a and IL-1b in PBMCs [J]. Int J Mol Sci, 14(12): 23910–23921.
[28] Cojocaru M,
Cojocaru IM, Silosi I, et al. (2011). Manifestations of systemic lupus
erythematosus [J]. Maedica (Buchar), 6(4): 330-336.
[29] Zhang H,
Huang X, Ye L, et al. (2018). B Cell-Related Circulating MicroRNAs With the
Potential Value of Biomarkers in the Differential Diagnosis, and
Distinguishment Between the Disease Activity and Lupus Nephritis for Systemic
Lupus Erythematosus [J]. Front Immunol, 9: 1473.
[30] Liu WH,
Kang SG, Huang Z, et al. (2016). A miR-155-Peli1-c-Rel pathway controls the
generation and function of T follicular helper cells [J]. J Exp Med, 213(9): 1901-1919.
[31] Broen JC,
Radstake TR, Rossato M. (2014). The role of genetics and epigenetics in the
pathogenesis of systemic sclerosis [J]. Nat Rev Rheumatol, 10(11): 671-681.
[32] Artlett CM,
Sassi-Gaha S, Hope JL, et al. (2017). Mir-155 is overexpressed in systemic
sclerosis fibroblasts and is required for NLRP3
inflammasome mediated collagen synthesis during fibrosis [J]. Arthritis Res
Ther, 19(1): 144.
[33] Nair JJ,
Singh TP. (2017). Sjögren’s syndrome: review of the aetiology, pathophysiology
& potential therapeutic interventions [J]. J Clin Exp Dent, 9(4): e584-e589.
[34] Reale M, D’Angelo
C, Costantini E, et al. (2018). MicroRNA in Sjögren’ssyndrome: Their potential
roles in pathogenesis and diagnosis [J]. J Immunol Res, 2018: 7510174.
[35] Pauley KM,
Stewart CM, Gauna AE, et al. (2011). Altered miR-146a expression in Sjögren’s
syndrome and its functional role in innate immunity [J]. Eur J Immunol, 41(7): 2029-2039.
[36] Shi H,
Zheng LY, Zhang P, et al. (2014). miR-146a and miR-155 expression in PBMCs from
patients with Sjogren’s syndrome [J]. J Oral Pathol Med, 43(10): 792-797.
[37] Liang CY,
Xiong K, Szulwach KE, et al. Sjogren syndrome antigen B (SSB)/La promotes
global microRNA expression by binding microRNA precursors through stem-loop
recognition [J]. J Biol Chem, 2013, 288(1): 723-736.