magazinelogo

International Journal of Clinical and Experimental Medicine Research

ISSN Print: 2575-7989 Downloads: 202168 Total View: 2392552
Frequency: quarterly ISSN Online: 2575-7970 CODEN: IJCEMH
Email: ijcemr@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/ijcemr.2020.07.002

Molecular Mechanism of microRNA-155 in Connective Tissue Diseases

Jennifer L. Giguere *, Jessica A. Mabragana

College of Health and Human Sciences, Northern Illinois University, USA.

*Corresponding author: Jennifer L. Giguere

Published: June 24,2020

Abstract

Abnormal expression of miRNAs is related to many diseases, including  immune cells rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, primary sjogrens syndrome, and so on. Connective tissue diseases (CTDs) is a widely immune-mediated heterogeneous disease. The molecular mechanism of miRNA-155 in different CTDs is complex and changeable. In this paper, we systematically review the correlation between the miRNA-155 and CTDs, and demonstrated the molecular mechanism of miRNA-155 in connective tissue diseases. It might bring new potential markers for the  diagnosis and treatment.

References

[1]       Farh KK, Marson A, Zhu J, et al. (2015). Genetic and epigenetic fine mapping of causal autoimmune disease variants [J]. Nature, 518(7539): 337-343.

[2]       Shooshtari P, Huang H, Cotsapas C. (2017). Integrative Genetic and Epigenetic Analysis Uncovers Regulatory Mechanisms of Autoimmune Disease [J]. Am J Hum Genet, 101(1): 75-86.

[3]       Huntzinger E, Izaurralde E. (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay [J]. Nat Rev Genet, 12(2): 99-110.

[4]       Bartel DP. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function [J]. Cell, 116(2): 281-297.

[5]       Roberts TC. (2015). The microRNA machinery [J]. Adv Exp Med Biol, 887: 15-30.

[6]       Lee RC, Ambros V. (2001). An extensive class of small RNAs in Caenorhabditis elegans [J]. Science, 294(5543): 862-864.

[7]       Bortolin-Cavaille ML, Dance M, Weber M, et al. (2009). C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts [J]. Nucleic Acids Res, 37(10): 3464-3473.

[8]       Cai X, Hagedorn CH, Cullen BR. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs [J]. RNA, 10(12): 1957-1966.

[9]       Ballarino M, Pagano F, Girardi E, et al. (2009). Coupled RNA processing and transcription of intergenic primary microRNAs [J]. Mol Cell Biol, 29(20): 5632-5638.

[10]    Han J, Lee Y, Yeom KH, et al. (2004). The Drosha-DGCR8 complex in primary microRNA processing [J]. Genes Dev, 18(24): 3016-3027.

[11]    Baulina NM, Kulakova OG, Favorova OO. (2016). MicroRNAs: the role in autoimmune inflammation [J]. Acta Naturae, 8(1): 21-33.

[12]    Tam W. (2001). Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA [J]. Gene, 22: 274.

[13]    Wu XY, Pais EM, Li Lan, et al. (2017). MicroRNA-155: a Novel Armamentarium Against Inflammatory Diseases [J]. Inflammation, 40(2): 708-716.

[14]    Costinean S, Zanesi N, Pekarsky Y, et al. (2006). Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice [J]. Proc Natl Acad Sci USA, 103(18): 7024-7029.

[15]    Vigorito E, Perks KL, Abreu-Goodger C, et al. (2007). microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells [J]. Immunity, 27(6): 847-859.

[16]    Leung WH, Tarasenko T, Bolland S. (2009). Differential roles for the inositol phosphatase SHIP in the regulation of macrophages and lymphocytes [J]. Immunol Res, 43(1-3): 243-251.

[17]    O’Connell RM, Chaudhuri AA, Rao DS, et al. (2009). Inositol phosphatase SHIP1 is a primary target of miR-155 [J]. Proc Natl Acad Sci USA, 106(17): 7113-7118.

[18]    Zhang J, Cheng Y, Cui W, et al. (2014). MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis [J]. J Neuroimmunol, 266(1-2), 56-63.

[19]    Blüml S, Bonelli M, Niederreiter B, et al. (2011). Essential role for micro-RNA 155 in the pathogenesis of autoimmune arthritis in mice [J]. Arthritis Rheum, 63(5): 1281-1288.

[20]    Banerjee A, Schambach F, DeJong CS, et al. (2010). Micro-RNA-155 inhibits IFN-gamma signaling in CD4+ T cells [J]. Eur J Immunol, 40(1): 225-231.

[21]    Escobar T, Yu CR, Muljo SA, et al. (2013). STAT3 activates miR-155 in Th17 cells and acts in concert to promote experimental autoimmune uveitis [J]. Invest Ophthalmol Vis Sci, 54(6): 4017-4025. 

[22]    Lu LF, Thai TH, Calado DP, et al. (2009). Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein [J]. Immunity, 30(1): 80-91.

[23]    Banerjee A, Schambach F, DeJong CS, et al. (2010). MicroRNAs in the key events of systemic lupus erythematosus pathogenesis [J]. Eur J Immunol, 40(1): 225-231.

[24]    Ceppi M, Pereira PM, Dunand-Sauthier I, et al. (2009). MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells [J]. Proc Natl Acad Sci USA, 106(8): 2735-2740.

[25]    Frisell T, Hellgren K, Alfredsson L, et al. (2016). Familial aggregation of arthritis-related diseases in seropositive and seronegative rheumatoid arthritis: a register-based case-control study in Sweden [J]. Ann Rheum Dis, 75(1): 183-189.

[26]    Elmesmari A, Fraser AR, Wood C et al. (2016). MicroRNA-155 regulates monocyte chemokine and chemokine receptor expression in Rheumatoid Arthritis [J]. Rheumatology (Oxford), 55(11): 2056-2065.

[27]    Li X, Tian F, Wang F. (2013). Rheumatoid arthritis-associated microRNA-155 targets SOCS1 and upregulates TNF-a and IL-1b in PBMCs [J]. Int J Mol Sci, 14(12): 23910–23921.

[28]    Cojocaru M, Cojocaru IM, Silosi I, et al. (2011). Manifestations of systemic lupus erythematosus [J]. Maedica (Buchar), 6(4): 330-336.

[29]    Zhang H, Huang X, Ye L, et al. (2018). B Cell-Related Circulating MicroRNAs With the Potential Value of Biomarkers in the Differential Diagnosis, and Distinguishment Between the Disease Activity and Lupus Nephritis for Systemic Lupus Erythematosus [J]. Front Immunol, 9: 1473.

[30]    Liu WH, Kang SG, Huang Z, et al. (2016). A miR-155-Peli1-c-Rel pathway controls the generation and function of T follicular helper cells [J]. J Exp Med, 213(9): 1901-1919.

[31]    Broen JC, Radstake TR, Rossato M. (2014). The role of genetics and epigenetics in the pathogenesis of systemic sclerosis [J]. Nat Rev Rheumatol, 10(11): 671-681.

[32]    Artlett CM, Sassi-Gaha S, Hope JL, et al. (2017). Mir-155 is overexpressed in systemic sclerosis fibroblasts and is required for NLRP3 inflammasome mediated collagen synthesis during fibrosis [J]. Arthritis Res Ther, 19(1): 144.

[33]    Nair JJ, Singh TP. (2017). Sjögren’s syndrome: review of the aetiology, pathophysiology & potential therapeutic interventions [J]. J Clin Exp Dent, 9(4): e584-e589.

[34]    Reale M, D’Angelo C, Costantini E, et al. (2018). MicroRNA in Sjögren’ssyndrome: Their potential roles in pathogenesis and diagnosis [J]. J Immunol Res, 2018: 7510174.

[35]    Pauley KM, Stewart CM, Gauna AE, et al. (2011). Altered miR-146a expression in Sjögren’s syndrome and its functional role in innate immunity [J]. Eur J Immunol, 41(7): 2029-2039.

[36]    Shi H, Zheng LY, Zhang P, et al. (2014). miR-146a and miR-155 expression in PBMCs from patients with Sjogren’s syndrome [J]. J Oral Pathol Med, 43(10): 792-797.

[37]    Liang CY, Xiong K, Szulwach KE, et al. Sjogren syndrome antigen B (SSB)/La promotes global microRNA expression by binding microRNA precursors through stem-loop recognition [J]. J Biol Chem, 2013, 288(1): 723-736.

How to cite this paper

Molecular Mechanism of microRNA-155 in Connective Tissue Diseases

How to cite this paper: Jennifer L. Giguere, Jessica A. Mabragana. (2020) Molecular Mechanism of microRNA-155 in Connective Tissue Diseases. International Journal of Clinical and Experimental Medicine Research, 4(3), 41-46.

DOI: http://dx.doi.org/10.26855/ijcemr.2020.07.002