References
[1] Lei Fan, Kathrin Strasser-Weippl, Jun-Jie Li, et al. (2014). Breast
cancer in China [J]. The Lancet Oncology, 15(7): e279-e289.
[2]
W. Chen, R. Zheng, P. D. Baade, et
al. (2016). Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 66(2):
115-32.
[3]
Timothy J. Key, Pia K. Verkasalo,
Emily Banks. (2001). Epidemiology of breast cancer [J]. The Lancet Oncology,
2(3): 133-140.
[4]
Ben Zhang, Alicia Beeghly-Fadiel,
Jirong Long, et al. (2011). Genetic variants associated with breast-cancer
risk: comprehensive research synopsis, meta-analysis, and epidemiological
evidence [J]. The Lancet Oncology, 12(5): 477-488.
[5]
Xu Yali, Sun Qiang, Shan Guangliang,
et al. (2012). Risk Factors of Breast Cancer in China: A Case-Control Study
[J]. Medical Journal of Peking Union Medical College Hospital, 01: 7-14.
[6]
J. S. Mattick, I. V. Makunin. (2006).
Non-coding RNA [J]. Hum Mol Genet, 15 Spec No 1: R17-29.
[7]
A. Lujambio, S. W. Lowe. (2012). The
microcosmos of cancer [J]. Nature, 482(7385): 347-55.
[8]
E. Berezikov. (2011). Evolution of
microRNA diversity and regulation in animals [J]. Nat Rev Genet, 12(12): 846-60.
[9]
J. E. Wilusz, H. Sunwoo, D. L.
Spector. (2009). Long noncoding RNAs: functional surprises from the RNA world [J].
Genes Dev, 23(13): 1494-504.
[10]
R. J. Taft, M. Pheasant, J. S. Mattick.
(2007). The relationship between non-protein-coding DNA and eukaryotic
complexity [J]. Bioessays, 29(3): 288-99.
[11]
J. Cao, C. Luo, R. Peng, et al. (2016).
MiRNA-binding site functional polymorphisms in DNA repair genes RAD51, RAD52,
and XRCC2 and breast cancer risk in Chinese population [J].Tumor Biol, 2016.
[12]
J. Cao, C. Luo, R. Yan, et al. (2016).
rs15869 at miRNA binding site in BRCA2 is associated with breast cancer
susceptibility [J]. Med Oncol, 33(12): 135.
[13]
J. S. Mattick. (2009). The genetic
signatures of noncoding RNAs [J]. PLoS Genet, 5(4): e1000459.
[14]
M. C. Lai, Z. Yang, L. Zhou, et al. (2012).
Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of
hepatocellular carcinoma after liver transplantation [J]. Med Oncol, 29(3):
1810-6.
[15]
C. Braconi, N. Valeri, T. Kogure, et
al. (2011). Expression and functional role of a transcribed noncoding RNA with
an ultraconserved element in hepatocellular carcinoma [J]. Proc Natl Acad Sci U
S A, 108(2): 786-91.
[16]
H. Sun, G. Wang, Y. Peng, et al. (2015).
H19 lncRNA mediates 17beta-estradiol-induced cell proliferation in MCF-7 breast
cancer cells [J]. Oncol Rep, 33(6): 3045-52.
[17]
R. Vikram, R. Ramachandran, K. S.
Abdul. (2014). Functional significance of long non-coding RNAs in breast cancer
[J]. Breast Cancer, 21(5): 515-21.
[18]
Y. Li, X. Wang. (2016). Role of long
noncoding RNAs in malignant disease (Review) [J]. Mol Med Rep, 13(2): 1463-9.
[19]
M. Guttman, I. Amit, M. Garber, et
al. (2009). Chromatin signature reveals over a thousand highly conserved large
non-coding RNAs in mammals [J]. Nature, 458(7235): 223-7.
[20]
T. Derrien, R. Johnson, G. Bussotti,
et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of
their gene structure, evolution, and expression [J]. Genome Res, 22(9): 1775-89.
[21]
S. J. Andrews, J. A. Rothnagel. (2014).
Emerging evidence for functional peptides encoded by short open reading frames [J].
Nat Rev Genet, 15(3): 193-204.
[22]
A. I. Nesvizhskii. (2014). Proteogenomics:
concepts, applications and computational strategies [J]. Nat Methods, 11(11):
1114-25.
[23]
P. J. Batista, H. Y. Chang. Long
noncoding RNAs: cellular address codes in development and disease [J]. Cell,
2013, 152(6): 1298-307.
[24]
Xia Tian, Xiao Bingxiu, Guo Junming.
(2013). Mechanism of Long-chain Noncoding RNA and Its Research Methods [J]. Heredity,
03: 269-280.
[25]
J. L. Rinn, M. Kertesz, J. K. Wang,
et al. (2007). Functional demarcation of active and silent chromatin domains in
human HOX loci by noncoding RNAs [J]. Cell, 129(7): 1311-23.
[26]
R. A. Gupta, N. Shah, K. C. Wang, et
al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer
metastasis [J]. Nature, 464(7291): 1071-6.
[27]
K. M. Chisholm, Y. Wan, R. Li, et
al. (2012). Detection of long non-coding RNA in archival tissue: correlation
with polycomb protein expression in primary and metastatic breast carcinoma [J].
PLoS One, 7(10): e47998.
[28]
M. C. Tsai, O. Manor, Y. Wan, et al.
(2010). Long noncoding RNA as modular scaffold of histone modification
complexes [J]. Science, 329(5992): 689-93.
[29]
S. Bayram, A. T. Sumbul, C. Y.
Batmaci, et al. (2015). Effect of HOTAIR rs920778 polymorphism on breast cancer
susceptibility and clinicopathologic features in a Turkish population [J].
Tumour Biol, 36(5): 3863-70.
[30]
R. Yan, J. Cao, C. Song, et al. (2015).
Polymorphisms in lncRNA HOTAIR and susceptibility to breast cancer in a Chinese
population [J]. Cancer Epidemiol, 39(6): 978-85.
[31]
Y. Zhang, B. Tycko. (1992). Monoallelic
expression of the human H19 gene [J]. Nat Genet, 1(1): 40-4.
[32]
K. Hibi, H. Nakamura, A. Hirai, et
al. (1996). Loss of H19 imprinting in esophageal cancer [J]. Cancer Res, 56(3):
480-2.
[33]
Y. Fellig, I. Ariel, P. Ohana, et
al. (2005). H19 expression in hepatic metastases from a range of human
carcinomas [J]. J Clin Pathol, 58(10): 1064-8.
[34]
C. Vennin, N. Spruyt, F. Dahmani, et
al. (2015). H19 non coding RNA-derived miR-675 enhances tumorigenesis and
metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b [J]. Oncotarget,
6(30): 29209-23.
[35]
N. Berteaux, S. Lottin, D. Monte, et
al. (2005). H19 mRNA-like noncoding RNA promotes breast cancer cell
proliferation through positive control by E2F1 [J]. J Biol Chem, 280(33): 29625-36.
[36]
Jun Lv, Ya-Qun Yu, Shu-Qun Li, et
al. (2014). Aflatoxin B1 Promotes Cell Growth and Invasion in Hepatocellular
Carcinoma HepG2 Cells through H19 and E2F1 [J]. Asian Pacific Journal of Cancer
Prevention, 15(6): 2565-2570.
[37]
W. P. Tsang, E. K. Ng, S. S. Ng, et
al. (2010). Oncofetal H19-derived miR-675 regulates tumor suppressor RB in
human colorectal cancer [J]. Carcinogenesis, 31(3): 350-8.
[38]
C. Ma, X. Shi, Q. Zhu, et al. (2016).
The growth arrest-specific transcript 5 (GAS5): a pivotal tumor suppressor long
noncoding RNA in human cancers [J]. Tumour Biol, 37(2): 1437-44.
[39]
M. Mourtada-Maarabouni, M. R. Pickard,
V. L. Hedge, et al. (2009). GAS5, a non-protein-coding RNA, controls apoptosis
and is downregulated in breast cancer [J]. Oncogene, 28(2): 195-208.
[40]
M. R. Pickard, G. T. Williams. (2014).
Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells:
implications for chemotherapy [J]. Breast Cancer Res Treat, 145(2): 359-70.
[41]
W. Li, L. Zhai, H. Wang, et al. (2016).
Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer [J].
Oncotarget, 7(19): 27778-86.
[42]
Z. Zhang, Z. Zhu, K. Watabe, et al. (2013).
Negative regulation of lncRNA GAS5 by miR-21 [J]. Cell Death Differ, 20(11):
1558-68.
[43]
A. Guffanti, M. Iacono, P. Pelucchi,
et al. (2009). A transcriptional sketch of a primary human breast cancer by 454
deep sequencing [J]. BMC Genomics, 10: 163.
[44]
T. Gutschner, M. Hammerle, M.
Eissmann, et al. (2013). The noncoding RNA MALAT1 is a critical regulator of
the metastasis phenotype of lung cancer cells [J]. Cancer Res, 73(3): 1180-9.
[45]
J. M. Silva, D. S. Perez, J. R.
Pritchett, et al. (2010). Identification of long stress-induced non-coding
transcripts that have altered expression in cancer [J]. Genomics, 95(6): 355-62.
[46]
J. M. Silva, N. J. Boczek, M. W.
Berres, et al. (2011). LSINCT5 is overexpressed in breast and ovarian cancer and
affects cellular proliferation [J]. Rna
Biology, 8(3): 496-505.
[47]
C. M. Klinge, S. C. Jernigan, K. A.
Mattingly, et al. (2004). Estrogen response element-dependent regulation of
transcriptional activation of estrogen receptors alpha and beta by coactivatorsand
corepressors [J]. J Mol Endocrinol, 33(2): 387-410.
[48]
R. B. Lanz, S. S. Chua, N. Barron,
et al. (2003). Steroid Receptor RNA Activator Stimulates Proliferation as Well
as Apoptosis In Vivo [J]. Molecular and Cellular Biology, 23(20): 7163-7176.
[49]
H. Yao, K. Brick, Y. Evrard, et al. (2010).
Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein
p68 and steroid receptor RNA activator SRA [J]. Genes
Dev, 24(22): 2543-55.
[50]
Xiansi Zhao, Jeffrey R. Patton,
Sajal K. Ghosh, et al. (2007). Pus3p-and pus1p-dependentpseudouridylation of
steroid receptor RNA activator controls a functional switch thatregulates
nuclear receptor signaling [J]. Molecular Endocrinology, 21(3): 686-699.
[51]
R. Yan, K. Wang, R. Peng, et al. (2016).
Genetic variants in lncRNA SRA and risk of breast cancer [J]. Oncotarget, 7:
22486-22496.
[52]
E. Emberley, G. J. Huang, M. K.
Hamedani, et al. (2003). Identification of new human coding steroid receptor
RNA activator isoforms [J]. Biochem Biophys Res Commun, 301(2): 509-15.