magazinelogo

International Journal of Clinical and Experimental Medicine Research

ISSN Print: 2575-7989 Downloads: 202167 Total View: 2392533
Frequency: quarterly ISSN Online: 2575-7970 CODEN: IJCEMH
Email: ijcemr@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/ijcemr.2020.07.003

Research on Long-Chain Non-Coding RNA and Breast Cancer: A Review

Arabela N. Gerardi *, Igor E. Sullivan

Louisiana State University, Louisiana 70803, USA.

*Corresponding author: Arabela N. Gerardi

Published: June 24,2020

Abstract

lncRNAs play an important role in the occurrence, metastasis, treatment and prognosis of various cancers including breast cancer. Therefore, lncRNAs have become a hot topic in cancer research. At present, several common lncRNAs, such as HOTAIR, H19, GAS5, MALAT1, LSINCT5, and SRA, have been extensively studied, and their mechanisms in breast tumors have gradually become clear as the research progresses. However, the research of lncRNAs such as LincROR, UCA1, MEG3, and NKILA is still at an early stage, and more research is needed to clarify its mechanism in cancer. With the study of lncRNAs, more lncRNAs will be discovered. Although our  current understanding on the molecular mechanism of lncRNA in various biological processes is still limited, we hope it can be used for tumor diagnosis, treatment and prognosis for patients with breast cancer in future clinic work.

References

[1]       Lei Fan, Kathrin Strasser-Weippl, Jun-Jie Li, et al. (2014). Breast cancer in China [J]. The Lancet Oncology, 15(7): e279-e289.

[2]       W. Chen, R. Zheng, P. D. Baade, et al. (2016). Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 66(2): 115-32.

[3]       Timothy J. Key, Pia K. Verkasalo, Emily Banks. (2001). Epidemiology of breast cancer [J]. The Lancet Oncology, 2(3): 133-140.

[4]       Ben Zhang, Alicia Beeghly-Fadiel, Jirong Long, et al. (2011). Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence [J]. The Lancet Oncology, 12(5): 477-488.

[5]       Xu Yali, Sun Qiang, Shan Guangliang, et al. (2012). Risk Factors of Breast Cancer in China: A Case-Control Study [J]. Medical Journal of Peking Union Medical College Hospital, 01: 7-14.

[6]       J. S. Mattick, I. V. Makunin. (2006). Non-coding RNA [J]. Hum Mol Genet, 15 Spec No 1: R17-29.

[7]       A. Lujambio, S. W. Lowe. (2012). The microcosmos of cancer [J]. Nature, 482(7385): 347-55.

[8]       E. Berezikov. (2011). Evolution of microRNA diversity and regulation in animals [J]. Nat Rev Genet, 12(12): 846-60.

[9]       J. E. Wilusz, H. Sunwoo, D. L. Spector. (2009). Long noncoding RNAs: functional surprises from the RNA world [J]. Genes Dev, 23(13): 1494-504.

[10]    R. J. Taft, M. Pheasant, J. S. Mattick. (2007). The relationship between non-protein-coding DNA and eukaryotic complexity [J]. Bioessays, 29(3): 288-99.

[11]    J. Cao, C. Luo, R. Peng, et al. (2016). MiRNA-binding site functional polymorphisms in DNA repair genes RAD51, RAD52, and XRCC2 and breast cancer risk in Chinese population [J].Tumor Biol, 2016.

[12]    J. Cao, C. Luo, R. Yan, et al. (2016). rs15869 at miRNA binding site in BRCA2 is associated with breast cancer susceptibility [J]. Med Oncol, 33(12): 135.

[13]    J. S. Mattick. (2009). The genetic signatures of noncoding RNAs [J]. PLoS Genet, 5(4): e1000459.

[14]    M. C. Lai, Z. Yang, L. Zhou, et al. (2012). Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation [J]. Med Oncol, 29(3): 1810-6.

[15]    C. Braconi, N. Valeri, T. Kogure, et al. (2011). Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma [J]. Proc Natl Acad Sci U S A, 108(2): 786-91.

[16]    H. Sun, G. Wang, Y. Peng, et al. (2015). H19 lncRNA mediates 17beta-estradiol-induced cell proliferation in MCF-7 breast cancer cells [J]. Oncol Rep, 33(6): 3045-52.

[17]    R. Vikram, R. Ramachandran, K. S. Abdul. (2014). Functional significance of long non-coding RNAs in breast cancer [J]. Breast Cancer, 21(5): 515-21.

[18]    Y. Li, X. Wang. (2016). Role of long noncoding RNAs in malignant disease (Review) [J]. Mol Med Rep, 13(2): 1463-9.

[19]    M. Guttman, I. Amit, M. Garber, et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals [J]. Nature, 458(7235): 223-7.

[20]    T. Derrien, R. Johnson, G. Bussotti, et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression [J]. Genome Res, 22(9): 1775-89.

[21]    S. J. Andrews, J. A. Rothnagel. (2014). Emerging evidence for functional peptides encoded by short open reading frames [J]. Nat Rev Genet, 15(3): 193-204.

[22]    A. I. Nesvizhskii. (2014). Proteogenomics: concepts, applications and computational strategies [J]. Nat Methods, 11(11): 1114-25.

[23]    P. J. Batista, H. Y. Chang. Long noncoding RNAs: cellular address codes in development and disease [J]. Cell, 2013, 152(6): 1298-307.

[24]    Xia Tian, Xiao Bingxiu, Guo Junming. (2013). Mechanism of Long-chain Noncoding RNA and Its Research Methods [J]. Heredity, 03: 269-280.

[25]    J. L. Rinn, M. Kertesz, J. K. Wang, et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs [J]. Cell, 129(7): 1311-23.

[26]    R. A. Gupta, N. Shah, K. C. Wang, et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis [J]. Nature, 464(7291): 1071-6.

[27]    K. M. Chisholm, Y. Wan, R. Li, et al. (2012). Detection of long non-coding RNA in archival tissue: correlation with polycomb protein expression in primary and metastatic breast carcinoma [J]. PLoS One, 7(10): e47998.

[28]    M. C. Tsai, O. Manor, Y. Wan, et al. (2010). Long noncoding RNA as modular scaffold of histone modification complexes [J]. Science, 329(5992): 689-93.

[29]    S. Bayram, A. T. Sumbul, C. Y. Batmaci, et al. (2015). Effect of HOTAIR rs920778 polymorphism on breast cancer susceptibility and clinicopathologic features in a Turkish population [J]. Tumour Biol, 36(5): 3863-70.

[30]    R. Yan, J. Cao, C. Song, et al. (2015). Polymorphisms in lncRNA HOTAIR and susceptibility to breast cancer in a Chinese population [J]. Cancer Epidemiol, 39(6): 978-85.

[31]    Y. Zhang, B. Tycko. (1992). Monoallelic expression of the human H19 gene [J]. Nat Genet, 1(1): 40-4.

[32]    K. Hibi, H. Nakamura, A. Hirai, et al. (1996). Loss of H19 imprinting in esophageal cancer [J]. Cancer Res, 56(3): 480-2.

[33]    Y. Fellig, I. Ariel, P. Ohana, et al. (2005). H19 expression in hepatic metastases from a range of human carcinomas [J]. J Clin Pathol, 58(10): 1064-8.

[34]    C. Vennin, N. Spruyt, F. Dahmani, et al. (2015). H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b [J]. Oncotarget, 6(30): 29209-23.

[35]    N. Berteaux, S. Lottin, D. Monte, et al. (2005). H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1 [J]. J Biol Chem, 280(33): 29625-36.

[36]    Jun Lv, Ya-Qun Yu, Shu-Qun Li, et al. (2014). Aflatoxin B1 Promotes Cell Growth and Invasion in Hepatocellular Carcinoma HepG2 Cells through H19 and E2F1 [J]. Asian Pacific Journal of Cancer Prevention, 15(6): 2565-2570.

[37]    W. P. Tsang, E. K. Ng, S. S. Ng, et al. (2010). Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer [J]. Carcinogenesis, 31(3): 350-8.

[38]    C. Ma, X. Shi, Q. Zhu, et al. (2016). The growth arrest-specific transcript 5 (GAS5): a pivotal tumor suppressor long noncoding RNA in human cancers [J]. Tumour Biol, 37(2): 1437-44.

[39]    M. Mourtada-Maarabouni, M. R. Pickard, V. L. Hedge, et al. (2009). GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer [J]. Oncogene, 28(2): 195-208.

[40]    M. R. Pickard, G. T. Williams. (2014). Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: implications for chemotherapy [J]. Breast Cancer Res Treat, 145(2): 359-70.

[41]    W. Li, L. Zhai, H. Wang, et al. (2016). Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer [J]. Oncotarget, 7(19): 27778-86.

[42]    Z. Zhang, Z. Zhu, K. Watabe, et al. (2013). Negative regulation of lncRNA GAS5 by miR-21 [J]. Cell Death Differ, 20(11): 1558-68.

[43]    A. Guffanti, M. Iacono, P. Pelucchi, et al. (2009). A transcriptional sketch of a primary human breast cancer by 454 deep sequencing [J]. BMC Genomics, 10: 163.

[44]    T. Gutschner, M. Hammerle, M. Eissmann, et al. (2013). The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells [J]. Cancer Res, 73(3): 1180-9.

[45]    J. M. Silva, D. S. Perez, J. R. Pritchett, et al. (2010). Identification of long stress-induced non-coding transcripts that have altered expression in cancer [J]. Genomics, 95(6): 355-62.

[46]    J. M. Silva, N. J. Boczek, M. W. Berres, et al. (2011). LSINCT5 is overexpressed in breast and ovarian cancer and affects cellular proliferation [J]. Rna Biology, 8(3): 496-505.

[47]    C. M. Klinge, S. C. Jernigan, K. A. Mattingly, et al. (2004). Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors alpha and beta by coactivatorsand corepressors [J]. J Mol Endocrinol, 33(2): 387-410.

[48]    R. B. Lanz, S. S. Chua, N. Barron, et al. (2003). Steroid Receptor RNA Activator Stimulates Proliferation as Well as Apoptosis In Vivo [J]. Molecular and Cellular Biology, 23(20): 7163-7176.

[49]    H. Yao, K. Brick, Y. Evrard, et al. (2010). Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA [J]. Genes Dev, 24(22): 2543-55.

[50]    Xiansi Zhao, Jeffrey R. Patton, Sajal K. Ghosh, et al. (2007). Pus3p-and pus1p-dependentpseudouridylation of steroid receptor RNA activator controls a functional switch thatregulates nuclear receptor signaling [J]. Molecular Endocrinology, 21(3): 686-699.

[51]    R. Yan, K. Wang, R. Peng, et al. (2016). Genetic variants in lncRNA SRA and risk of breast cancer [J]. Oncotarget, 7: 22486-22496.

[52]    E. Emberley, G. J. Huang, M. K. Hamedani, et al. (2003). Identification of new human coding steroid receptor RNA activator isoforms [J]. Biochem Biophys Res Commun, 301(2): 509-15.

How to cite this paper

Research on Long-Chain Non-Coding RNA and Breast Cancer: A Review

How to cite this paper: Arabela N. Gerardi, Igor E. Sullivan. (2020) Research on Long-Chain Non-Coding RNA and Breast Cancer: A Review. International Journal of Clinical and Experimental Medicine Research, 4(3), 47-52.

DOI: http://dx.doi.org/10.26855/ijcemr.2020.07.003