References
[1] Schiff, N. D. (2015). Cognitive motor dissociation following severe brain injuries. JAMA neurology, 72(12), 1413-1415.
[2] Schiff, N. D. (2010). Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends in neurosciences, 33(1), 1-9.
[3] Fridman, E. A., Beattie, B. J., Broft, A., Laureys, S., & Schiff, N. D. (2014). Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain. Proceedings of the National Academy of Sciences, 111(17), 6473-6478.
[4] Vanhaudenhuyse, Audrey, et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain: A Journal of Neurology, vol. 133, Pt 1 (2010): 161-71. doi:10.1093/brain/awp313.
[5] Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. The Lancet, 325(8437), 1106-1107.
[6] O'Neal, C. M., Schroeder, L. N., Wells, A. A., Chen, S., Stephens, T. M., Glenn, C. A., & Conner, A. K. (2021). Patient out-comes in disorders of consciousness following transcranial magnetic stimulation: a systematic review and meta-analysis of individual patient data. Frontiers in Neurology, 12, 694970.
[7] Stagg, C. J., Best, J. G., Stephenson, M. C., O'Shea, J., Wylezinska, M., Kincses, Z. T., ... & Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. Journal of Neuroscience, 29(16), 5202-5206.
[8] Levkovitz, Y., & Segal, M. (2001). Aging affects transcranial magnetic modulation of hippocampal evoked potentials. Neurobiology of Aging, 22(2), 255-263.
[9] Levkovitz, Y., Grisaru, N., & Segal, M. (2001). Transcranial magnetic stimulation and antidepressive drugs share similar cellular effects in rat hippocampus. Neuropsychopharmacology, 24(6), 608-616.
[10] Ma, J., Zhang, Z., Kang, L., Geng, D., Wang, Y., Wang, M., & Cui, H. (2014). Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice. Experimental Gerontology, 58, 256-268.
[11] Meng, D., Xu, T., Guo, F., Yin, W., & Peng, T. (2009). The effects of high-intensity pulsed electromagnetic field on proliferation and differentiation of neural stem cells of neonatal rats in vitro. Journal of Huazhong University of Science and Technology [Medical Sciences], 29, 732-736.
[12] Pahk, K., & Lee, S. H. (2024). Effects of repetitive transcranial magnetic stimulation on improving cerebral blood flow in patients with middle cerebral artery steno-occlusion. Acta Neurologica Belgica, 124(1), 249-256.
[13] Shang, Y. Q., Xie, J., Peng, W., Zhang, J., Chang, D., & Wang, Z. (2018). Network-wise cerebral blood flow redistribution after 20 Hz rTMS on left dorso-lateral prefrontal cortex. European Journal of Radiology, 101, 144-148.
[14] Dong, L., Li, H., Dang, H., Zhang, X., Yue, S., & Zhang, H. (2023). Efficacy of non-invasive brain stimulation for disorders of consciousness: a systematic review and meta-analysis. Frontiers in Neuroscience, 17, 1219043.
[15] Tomeh, A., Yusof Khan, A. H. K., Inche Mat, L. N., Basri, H., & Wan Sulaiman, W. A. (2022). Repetitive transcranial magnetic stimulation of the primary motor cortex beyond motor rehabilitation: a review of the current evidence. Brain Sciences, 12(6), 761.
[16] Shen, L., Huang, Y., Liao, Y., Yin, X., Huang, Y., Ou, J., ... & Long, J. (2023). Effect of high‐frequency repetitive transcranial magnetic stimulation over M1 for consciousness recovery after traumatic brain injury. Brain and Behavior, 13(5), e2971.
[17] Cincotta, M., Giovannelli, F., Chiaramonti, R., Bianco, G., Godone, M., Battista, D., ... & Rossi, S. (2015). No effects of 20 Hz-rTMS of the primary motor cortex in vegetative state: a randomised, sham-controlled study. Cortex, 71, 368-376.
[18] Aflalo, T., Zhang, C., Revechkis, B., Rosario, E., Pouratian, N., & Andersen, R. A. (2022). Implicit mechanisms of intention. Current Biology, 32(9), 2051-2060.
[19] Xu, C., Wu, W., Zheng, X., Liang, Q., Bai, Y., & Xie, Q. (2023). Repetitive transcranial magnetic stimulation over the posterior parietal cortex improves functional recovery in nonresponsive patients: A crossover, randomized, double-blind, sham-controlled study. Frontiers in Neurology, 14, 1059789.
[20] Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(3), 564-583.
[21] Cavanna, A. E. (2007). The precuneus and consciousness. CNS Spectrums, 12(7), 545-552.
[22] Wenderoth, N., Debaere, F., Sunaert, S., & Swinnen, S. P. (2005). The role of anterior cingulate cortex and precuneus in the co-ordination of motor behaviour. European Journal of Neuroscience, 22(1), 235-246.
[23] Wu, H., Qi, Z., Wu, X., Zhang, J., Wu, C., Huang, Z., ... & Qin, P. (2022). Anterior precuneus related to the recovery of con-sciousness. NeuroImage: Clinical, 33, 102951.
[24] Thibaut, A., Di Perri, C., Chatelle, C., Bruno, M. A., Bahri, M. A., Wannez, S., ... & Laureys, S. (2015). Clinical response to tDCS depends on residual brain metabolism and grey matter integrity in patients with minimally conscious state. Brain Stimulation, 8(6), 1116-1123.
[25] Wu, X., Zou, Q., Hu, J., Tang, W., Mao, Y., Gao, L., ... & Yang, Y. (2015). Intrinsic functional connectivity patterns predict consciousness level and recovery outcome in acquired brain injury. Journal of Neuroscience, 35(37), 12932-12946.
[26] Yeager, B. E., Bruss, J., Duffau, H., Herbet, G., Hwang, K., Tranel, D., & Boes, A. D. (2022). Central precuneus lesions are associated with impaired executive function. Brain Structure and Function, 227(9), 3099-3108.
[27] Zhao DX, Guo YK, Wang XJ, Liu WQ, Mao JC, & Chen GQ et al. (2022). Repetitive transcranial magnetic stimulation for the treatment of arousal in patients with pDoC. International Journal of Neurology Neurosurgery, (02), 54-60.
[28] Kobayashi, M., & Pascual-Leone, A. (2003). Transcranial magnetic stimulation in neurology. The Lancet Neurology, 2(3), 145-156.
[29] Lapitskaya, N., Coleman, M. R., Nielsen, J. F., Gosseries, O., & de Noordhout, A. M. (2009). Disorders of consciousness: further pathophysiological insights using motor cortex transcranial magnetic stimulation. Progress in Brain Research, 177, 191-200.
[30] Seel, R. T., Sherer, M., Whyte, J., Katz, D. I., Giacino, J. T., Rosenbaum, A. M., ... & Zasler, N. (2010). Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research. Archives of Physical Medicine and Rehabilitation, 91(12), 1795-1813.
[31] Schnakers, C., Vanhaudenhuyse, A., Giacino, J., Ventura, M., Boly, M., Majerus, S., ... & Laureys, S. (2009). Diagnostic accu-racy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurology, 9, 1-5.
[32] Sitt, J. D., King, J. R., El Karoui, I., Rohaut, B., Faugeras, F., Gramfort, A., ... & Naccache, L. (2014). Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain, 137(8), 2258-2270.
[33] Bodart, O., Gosseries, O., Wannez, S., Thibaut, A., Annen, J., Boly, M., ... & Laureys, S. (2017). Measures of metabolism and complexity in the brain of patients with disorders of consciousness. NeuroImage: Clinical, 14, 354-362.
[34] Lord, V., & Opacka-Juffry, J. (2016). Electroencephalography (EEG) measures of neural connectivity in the assessment of brain responses to salient auditory stimuli in patients with disorders of consciousness. Frontiers in Psychology, 7, 184253.
[35] Rosanova, M., Casarotto, S., Pigorini, A., Canali, P., Casali, A. G., & Massimini, M. (2012). Combining transcranial magnetic stimulation with electroencephalography to study human cortical excitability and effective connectivity. Neuronal Network Analysis: Concepts and Experimental Approaches, 435-457.
[36] Boly, M., Massimini, M., Garrido, M. I., Gosseries, O., Noirhomme, Q., Laureys, S., & Soddu, A. (2012). Brain connectivity in disorders of consciousness. Brain Connectivity, 2(1), 1-10.
[37] Ragazzoni, A., Pirulli, C., Veniero, D., Feurra, M., Cincotta, M., Giovannelli, F., ... & Miniussi, C. (2013). Vegetative versus minimally conscious states: a study using TMS-EEG, sensory and event-related potentials. PloS One, 8(2), e57069.
[38] Casali, A. G., Gosseries, O., Rosanova, M., Boly, M., Sarasso, S., Casali, K. R., ... & Massimini, M. (2013). A theoretically based index of consciousness independent of sensory processing and behavior. Science Translational Medicine, 5(198), 198ra105-198ra105.
[39] Bai, Y., Xia, X., Yang, Y., & Li, X. (2016). Evaluating the effect of repetitive transcranial magnetic stimulation on disorders of consciousness by using TMS-EEG. Frontiers in Neuroscience, 10, 211697.
[40] Lefaucheur, J. P., Aleman, A., Baeken, C., Benninger, D. H., Brunelin, J., Di Lazzaro, V., ... & Ziemann, U. (2020). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clinical neurophysiology, 131(2), 474-528.
[41] Lapitskaya, N., Gosseries, O., Delvaux, V., Overgaard, M., Nielsen, F., Maertens de Noordhout, A., ... & Laureys, S. (2009). Transcranial magnetic stimulation in disorders of consciousness. Reviews in the Neurosciences, 20(3-4), 235-250.
[42] Reithler, J., Peters, J. C., & Sack, A. T. (2011). Multimodal transcranial magnetic stimulation: using concurrent neuroimaging to reveal the neural network dynamics of noninvasive brain stimulation. Progress in Neurobiology, 94(2), 149-165.
[43] Luk, K. Y., Ouyang, H. X., & Pang, M. Y. C. (2022). Low-frequency rTMS over contralesional M1 increases ipsilesional corti-cal excitability and motor function with decreased interhemispheric asymmetry in subacute stroke: a randomized controlled study. Neural Plasticity, 2022.
[44] Puri, R., & Hinder, M. R. (2022). Response bias reveals the role of interhemispheric inhibitory networks in movement preparation and execution. Neuropsychologia, 165, 108120.
[45] Fitzpatrick, A. M., Dundon, N. M., & Valyear, K. F. (2019). The neural basis of hand choice: An fMRI investigation of the Pos-terior Parietal Interhemispheric Competition model. Neuroimage, 185, 208-221.
[46] Chen, J. M., Chen, Q. F., Wang, Z. Y., Chen, Y. J., Zhang, N. N., Xu, J. W., & Ni, J. (2022). Influence of high-frequency repeti-tive transcranial magnetic stimulation on neurobehavioral and electrophysiology in patients with disorders of consciousness. Neural Plasticity, 2022.
[47] Zhang, X. H., & Wang, Y. L. (2021). The clinical effect of repetitive transcranial magnetic stimulation on the disturbance of consciousness in patients in a vegetative state. Frontiers in Neuroscience, 15, 647517.
[48] He, F., Wu, M., Meng, F., Hu, Y., Gao, J., Chen, Z., ... & Pan, G. (2018). Effects of 20 Hz repetitive transcranial magnetic stimu-lation on disorders of consciousness: a resting-state electroencephalography study. Neural Plasticity, 2018.
[49] Legostaeva, L., Poydasheva, A., Iazeva, E., Sinitsyn, D., Sergeev, D., Bakulin, I., ... & Piradov, M. (2019). Stimulation of the angular gyrus improves the level of consciousness. Brain Sciences, 9(5), 103.
[50] Liu, X., Meng, F., Gao, J., Zhou, Z., Pan, G., & Luo, B. (2018). Behavioral and resting state functional connectivity effects of high frequency rTMS on disorders of consciousness: a sham-controlled study. Frontiers in Neurology, 9, 411000.
[51] Xia, X., Bai, Y., Yang, Y., Li, X., & He, J. (2017). Effects of 10 Hz repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex in disorders of consciousness. Frontiers in Neurology, 8, 243696.
[52] Liu, P., Gao, J., Pan, S., Meng, F., Pan, G., Li, J., & Luo, B. (2016). Effects of high-frequency repetitive transcranial magnetic stimulation on cerebral hemodynamics in patients with disorders of consciousness: a sham-controlled study. European Neurology, 76(1-2), 1-7.
[53] LU Chao, Fei Zhou, HU Xue-an, Luo Peng, Zhang Lei, LI Sanzhong, & Li B. (2016). Effects of low-frequency repetitive transcranial magnetic stimulation on arousal in patients with vegetative state after craniocerebral injury. Chinese Medical Review, 13(17), 69-72.
[54] Ma HB, Zhang R, Xiong JD, & Zhang PN. (2023). Effects of low-frequency repetitive transcranial magnetic stimulation on arousal in patients with persistent vegetative state after craniocerebral injury. Chinese Journal of Medical Medicine, 25(4), 614-617.
[55] Huang, Y. Z., Edwards, M. J., Rounis, E., Bhatia, K. P., & Rothwell, J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45(2), 201-206.
[56] Rounis, E., & Huang, Y. Z. (2020). Theta burst stimulation in humans: a need for better understanding effects of brain stimulation in health and disease. Experimental Brain Research, 238(7), 1707-1714.
[57] Zhou J, Hong C L, Hao X X, & Liu Y L. (2018). The effect of Theta explosive transcranial magnetic stimulation on motor function after stroke. Chinese Journal of Physical Medicine and Rehabilitation, 40(12), 952-956.
[58] Lefaucheur, J. P., Aleman, A., Baeken, C., Benninger, D. H., Brunelin, J., Di Lazzaro, V., ... & Ziemann, U. (2020). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clinical Neurophysiology, 131(2), 474-528.
[59] Wu, M., Wu, Y., Yu, Y., Gao, J., Meng, F., He, F., ... & Luo, B. (2018). Effects of theta burst stimulation of the left dorsolateral prefrontal cortex in disorders of consciousness. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 11(6), 1382-1384.
[60] Huang Shaochun, Tian Li, Zhang Xinyan, Liu Li, Rao Jiang, & Zhu Huimin. (2021). The stimulating effect of explosive magnetic stimulation combined with multi-sensory stimulation on patients with consciousness disturbance. Journal of Clinical Neurology, (06), 440-444.