References
[1] Kaufman, K. R., and Sutherland, D. H. (2006). Kinematics of Normal Human Walking. In J. Rose and J. G. Gamble (Eds.). Human Walking. 3rd ed. (pp.33-52). Philadelphia: Lippincott Williams & Wilkins.
[2] Inman, V. T., Ralston, H. J., Todd, F., Childress, D. S., and Gard, S. A. (2006). Human Locomotion. In J. Rose and J. G. Gamble (Eds.). Human Walking. 3rd ed. (pp.1-18). Philadelphia: Lippincott Williams & Wilkins.
[3] Vlutters, M., van Asseldonk, E. H., and van der Kooij, H. (2016). Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking. The Journal of Experimental Biology, 219(Pt 10), 1514-1523. https://doi.org/10.1242/jeb.129338.
[4] Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait & Posture, 3(4), 193-214. https://doi.org/10.1016/0966-6362(96)82849-9.
[5] Hasan, S. S., Robin, D. W., Szurkus, D., Ashmead, D. H., Peterson, S. W., and Shiavi, R. (1996). Simultaneous measurement of body center of pressure and center of gravity during upright stance. Part II: Amplitude and frequency data. Gait & Posture, 4(1), 11-20. https://doi.org/10.1016/0966-6362(95)01031-9.
[6] Panzer, V., Bandinelli, S., and Hallett, M. (1995). Biomechanical assessment of quiet standing and changes associated with aging. Archives of Physical Medicine and Rehabilitation, 76(2), 151-157. https://doi.org/10.1016/s0003-9993(95)80024-7.
[7] Yiou, E., Caderby, T., Delafontaine, A., Fourcade, P., and Honeine, J. (2017). Balance control during gait initiation: State-of-the-art and research perspectives. Balance Control During Gait Initiation: State-of-the-art and Research Perspectives, 8(11), 815-828. https://doi.org/10.5312/wjo.v8.i11.815.
[8] Simoneau, G. G. (2010). Chapter 15: Kinesiology of Walking. In D. A. Neumann (Ed.). Kinesiology of the musculoskeletal system: foundations for rehabilitation. 2nd ed. (pp.627-681). St. Louis: Mosby/Elsevier.
[9] Bonnefoy-Mazure, A., and Armand, S. (2015). Normal gait. In C. Federico and D. Jacques (Eds). Orthopedic management of children with cerebral palsy (chapter 16). (pp.200-211). Amsterdam: Elsevier.
[10] Smith, A. W., and Wong, D. P. (2019). Sagittal and frontal plane GAIT initiation kinetics in healthy, young subjects. Journal of Human Kinetics, 67(1), 85-100. https://doi.org/10.2478/hukin-2018-0087.
[11] Jian, Y., Winter, D., Ishac, M., and Gilchrist, L. (1993). Trajectory of the body COG and COP during initiation and termination of gait. Gait & Posture, 1(1), 9-22. https://doi.org/10.1016/0966-6362(93)90038-3.
[12] Hase, K., and Stein, R. B. (1998). Analysis of rapid stopping during human walking. Journal of Neurophysiology, 80(1), 255-261. https://doi.org/10.1152/jn.1998.80.1.255.
[13] Childress, D. S., and Gard, S. A. (2006). Commentary on the Six Determinants of Gait. In J. Rose and J. G. Gamble (Eds.). Human Walking. 3rd ed. (pp.19-22). Philadelphia: Lippincott Williams & Wilkins.
[14] Massion, J., and Woollacott, M. H. (2004). Posture and equilibrium. In A. M. Bronstein, T. Brandt, M. Woollacott and J. G. Nutt (Eds.). Clinical disorders of balance, posture and gait. 2nd ed. (pp.1-19). London: Arnold.
[15] Horak, F. B. (2009). Postural Control. In M. D. Binder, N. Hirokawa and U. Windhorst (Eds.). Encyclopedia of Neuroscience. (pp.3212-3219). Berlin: Springer.
[16] Horak F. B., and Macpherson, J. M. (1996). Postural orientation and equilibrium. In: L. B. Rowell and J. T. Shepard (Eds.). Handbook of Physiology: Section 12, Exercise Regulation and Integration of Multiple Systems. 1st ed. (pp.255-292). New York: Oxford University Press.
[17] Gracovetsky, S. (2008). The Spinal Engine. 2nd ed. Morrisville: Lulu Press.
[18] Thorstensson, A., Carlson, H., Zomlefer, M., and Nilsson, J. (1982). Lumbar back muscle activity in relation to trunk movements during locomotion in man. Acta Physiologica Scandinavica, 116(1), 13-20. https://doi.org/10.1111/j.1748-1716.1982.tb10593.x.
[19] Thorstensson, A., Nilsson, J., Carlson, H., and Zomlefer, M. R. (1984). Trunk movements in human locomotion. Acta Physio-logica Scandinavica, 121(1), 9-22. https://doi.org/10.1111/j.1748-1716.1984.tb10452.x.
[20] Opila-Correia, K. A. (1990). Kinematics of high-heeled gait. Archives of physical medicine and rehabilitation, 71(5), 304-309. https://pubmed.ncbi.nlm.nih.gov/232788.
[21] Krebs, D. E., Wong, D. W., Jevsevar, D. S., Riley, P. O., and Hodge, W. A. (1992). Trunk kinematics during locomotor activities. Physical Therapy, 72(7), 505-514. https://doi.org/10.1093/ptj/72.7.505.
[22] Crosbie, J., Vachalathiti, R., and Smith, R. (1997a). Patterns of spinal motion during walking. Gait & Posture. 5(1), 6-12. https://doi.org/10.1016/S0966-6362(96)01066-1.
[23] Elders, L. R., Greenwald, H. L., and Sartor, C. A. (1997). A Preliminary Study of Trunk Kinematics during Walking in Normal Subjects. Masters Theses. 322. https://scholarworks.gvsu.edu/theses/322.
[24] Cappozzo, A. (1981). Analysis of the linear displacement of the head and trunk during walking at different speeds. Journal of Biomechanics, 14(6), 411-425. https://doi.org/10.1016/0021-9290(81)90059-2.
[25] Lee, C. R., and Farley, C. T. (1998). Determinants of the center of mass trajectory in human walking and running. The Journal of Experimental Biology, 201(21), 2935-2944. https://doi.org/10.1242/jeb.201.21.2935.
[26] Minetti, A. E., Capelli, C., Zamparo, P., di Prampero, P. E., and Saibene, F. (1995). Effects of stride frequency on mechanical power and energy expenditure of walking. Medicine and Science in Sports and Exercise, 27(8), 1194-1202. https://doi.org/10.1249/00005768-199508000-00014.
[27] Ming, L. (n. d.). Tai Chi Medication: Methodology of Internal Equilibrium Re-creation for the Musculoskeletal System. Unpublish.
[28] Shumway-Cook, A., and Woollacott, M. H. (2016). Motor Control: Translating Research into Clinical Practice. 5th ed. Philadel-phia: Lippincott Williams and Wilkins.
[29] Mille, M., Johnson-Hilliard, M., Martinez, K., Zhang, Y., Edwards, B. J., and Rogers, M. W. (2013). One step, two steps, three steps more… Directional Vulnerability to falls in Community-Dwelling Older People. The Journal of Gerontology. Series A, Biological sciences and medical sciences, 68(12), 1540-1548. https://doi.org/10.1093/gerona/glt062.
[30] Maki, B. E., Edmondstone, M. A., and McIlroy, W. E. (2000). Age-related differences in laterally directed compensatory stepping behavior. The Journal of Gerontology. Series A, Biological Sciences and Medical Sciences, 55(5), M270-M277. https://doi.org/10.1093/gerona/55.5.m270.
[31] Piirtola, M., and Era, P. (2006). Force Platform Measurements as Predictors of Falls among Older People—A Review. Gerontol-ogy, 52(1), 1-16. https://doi.org/10.1159/000089820.
[32] Hase, K., and Stein, R. B. (1998). Analysis of rapid stopping during human walking. Journal of Neurophysiology, 80(1), 255-261. https://doi.org/10.1152/jn.1998.80.1.255.
[33] Halliday, S. E., Winte, D. A., Frank, J. S., Patla, A. E., and Prince, F. (1998). The initiation of gait in young, elderly, and Parkinson’s disease subjects. Gait and Posture, 8 (1) 8-14. https://doi.org/10.1016/S0966-6362(98)00020-4.
[34] Smith, A. W., and Wong, D. P. (2019). Sagittal and frontal plane gait initiation kinetics in healthy, young subjects. Journal of Human Kinetics, 67(1), 85-100. https://doi.org/10.2478/hukin-2018-0087.
[35] Yiou, E., Caderby, T., Delafontaine, A., Fourcade, P., and Honeine, J. (2017). Balance control during gait initiation: State-of-the-art and research perspectives. World Journal of Orthopedics, 8(11), 815-828. https://doi.org/10.5312/wjo.v8.i11.815.
[36] Rogers, M. W., Hedman, L. D., Johnson, M. L., Cain, T. D., and Hanke, T. (2001). Lateral Stability During Forward-Induced Stepping for Dynamic Balance Recovery in Young and Older Adults. The Journal of Gerontology. Series A, Biological sciences and medical sciences, 56(9), M589-M594. https://doi.org/10.1093/gerona/56.9.m589.
[37] Rogers, M. W., and Mille, M. (2003). Lateral stability and falls in older people. Exercise and Sport Sciences Reviews, 31(4), 182-187. https://doi.org/10.1097/00003677-200310000-00005.
[38] Chang, H., and Krebs, D. E. (1999). Dynamic balance control in elders: gait initiation assessment as a screening tool. Archives of physical medicine and rehabilitation, 80(5), 490-494. https://doi.org/10.1016/s0003-9993(99)90187-9.
[39] Sparrow, W., and Tirosh, O. (2005). Gait termination: a review of experimental methods and the effects of ageing and gait pathol-ogies. Gait & Posture, 22(4), 362-371. https://doi.org/10.1016/j.gaitpost.2004.11.005.
[40] Jian, Y., Winter, D., Ishac, M., and Gilchrist, L. (1993). Trajectory of the body COG and COP during initiation and termination of gait. Gait & Posture, 1(1), 9-22. https://doi.org/10.1016/0966-6362(93)90038-3.
[41] Brenière, Y., and Do, M. C. (1991). Control of gait initiation. Journal of Motor Behavior, 23(4), 235-240. https://doi.org/10.1080/ 00222895.1991.9942034.
[42] Polcyn, A. F., Lipsitz, L. A., Kerrigan, D. C., and Collins, J. J. (1998). Age-related changes in the initiation of gait: Degradation of central mechanisms for momentum generation. Archives of Physical Medicine and Rehabilitation, 79(12), 1582-1589. https://doi.org/10.1016/s0003-9993(98)90425-7.
[43] Cimolin, V., Cau, N., Galli, M., Santovito, C., Grugni, G., and Capodaglio, P. (2017). Gait initiation and termination strategies in patients with Prader-Willi syndrome. Journal of Neuroengineering and Rehabilitation, 14(1), 1-8.
[43] Cimolin, V., Cau, N., Galli, M., Santovito, C., Grugni, G., and Capodaglio, P. (2017). Gait initiation and termination strategies in patients with Prader-Willi syndrome. Journal of Neuroengineering and Rehabilitation, 14(1), 1-8. https://doi.org/10.1186/ s12984-017-0257-7.
[44] Novak, D., Reberšek, P., De Rossi, S. M., Donati, M., Podobnik, J., Beravs, T., Lenzi, T., Vitiello, N., Carrozza, M. C., and Munih, M. (2013). Automated detection of gait initiation and termination using wearable sensors. Medical engineering & physics, 35(12), 1713-1720. https://doi.org/10.1016/j.medengphy.2013.07.003.
[45] Novak, D., Rebersek, P., Beravs, T., Podobnik, J., Munih, M., De Rossi, S.M., Donati, M., Lenzi, T., Vitiello, N., and Carrozza, M.C. (2012). Early recognition of gait initiation and termination using wearable sensors. 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 1937-1942. https://doi.org/10.1109/BioRob. 2012.6290277.
[46] Jaeger, R. J., and Vanitchatchavan, P. (1992). Ground reaction forces during termination of human gait. Journal of Biomechanics, 25(10), 1233-1236. https://doi.org/10.1016/0021-9290(92)90080-k.
[47] Hase, K., and Stein, R. B. (1998). Analysis of rapid stopping during human walking. Journal of Neurophysiology, 80(1), 255-261. https://doi.org/10.1152/jn.1998.80.1.255.
[48] Menant, J. C., Steele, J. R., Menz, H. B., Munro, B. J., and Lord, S. R. (2009). Rapid gait termination: effects of age, walking surfaces and footwear characteristics. Gait & Posture, 30(1), 65-70. https://doi.org/10.1016/j.gaitpost.2009.03.003.
[49] Bishop, M., Brunt, D., Pathare, N., and Patel, B. (2004). The effect of velocity on the strategies used during gait termination. Gait & posture, 20(2), 134-139. https://doi.org/10.1016/j.gaitpost.2003.07.004.
[50] Meier, M. R., Desrosiers, J., Bourassa, P., and Błaszczyk, J. W. (2001). Effect of Type II diabetic peripheral neuropathy on gait termination in the elderly. Diabetologia, 44(5), 585-592. https://doi.org/10.1007/s001250051664.
[51] Perry, S. D., Santos, L., and Patla, A. E. (2001). Contribution of vision and cutaneous sensation to the control of center of mass (COM) during gait termination. Brain Research, 913(1), 27-34. https://doi.org/10.1016/s0006-8993(01)02748-2.
[52] Hof, A. L., Gazendam, M. G., and Sinke, W. (2005). The condition for dynamic stability. Journal of Biomechanics, 38(1), 1-8. https://doi.org/10.1016/j.jbiomech.2004.03.025.
[53] Wikstrom, E. A., Bishop, M. D., Inamdar, A. D., and Hass, C. J. (2010). Gait termination control strategies are altered in chronic ankle instability subjects. Medicine and science in sports and exercise, 42(1), 197-205. https://doi.org/10.1249/MSS.0b013e3181ad1e2f.
[54] Wikstrom, E. A., and Hass, C. J. (2012). Gait termination strategies differ between those with and without ankle instability. Clinical biomechanics (Bristol, Avon), 27(6), 619-624. https://doi.org/10.1016/j.clinbiomech.2012.01.001.
[55] Zhang, S. and Li, L. (2013). Feedforward and feedback control for gait and balance. Gait Biometrics, 2014:191-205.
[56] Cen, X., Jiang, X., and Gu, Y. (2019). Do different muscle strength levels affect stability during unplanned gait termination? Acta of Bioengineering and Biomechanics, 21(4), 27-35. https://doi.org/10.37190/abb-01420-2019-02.
[57] Cen, X., Lu, Z., Baker, J. S., Bíró, I., and Gu, Y. (2021). A Comparative Biomechanical Analysis during Planned and Unplanned Gait Termination in Individuals with Different Arch Stiffnesses. Applied Sciences, 11(4), 1871. https://doi.org/10.3390/ app11041871.
[58] Waters, R. L., and Morris, J. M. (1972). Electrical activity of muscles of the trunk during walking. Journal of Anatomy, 111(Pt 2), 191-199.
[59] Fang, X., and Jiang, Z. (2020). Three-dimensional thoracic and pelvic kinematics and arm swing maximum velocity in older adults using inertial sensor system. PeerJ, 8, e9329. https://doi.org/10.7717/peerj.9329.
[60] Leteneur, S., Gillet, C., Sadeghi, H., Allard, P., and Barbier, F. (2009). Effect of trunk inclination on lower limb joint and lumbar moments in able men during the stance phase of gait. Clinical biomechanics (Bristol, Avon), 24(2), 190-195. https://doi.org/10. 1016/j.clinbiomech.2008.10.005.
[61] Chung, C. Y., Park, M. S., Lee, S. H., Kong, S. J., and Lee, K. M. (2010). Kinematic aspects of trunk motion and gender effect in normal adults. Journal of Neuroengineering and Rehabilitation, 7, 9. https://doi.org/10.1186/1743-0003-7-9.
[62] Veneman, J. F., Menger, J., Van Asseldonk, E. H., Van Der Helm, F., and Van Der Kooij, H. (2008). Fixating the pelvis in the horizontal plane affects gait characteristics. Gait & Posture, 28(1), 157-163. https://doi.org/10.1016/j.gaitpost.2007.11.008.
[63] Mun, K. R., Guo, Z., and Yu, H. (2016). Restriction of pelvic lateral and rotational motions alters lower limb kinematics and muscle activation pattern during over-ground walking. Medical & Biological Engineering & Computing, 54(11), 1621-1629. https://doi.org/10.1007/s11517-016-1450-8.
[64] Saunders, J., Inman, V. T., and Eberhart, H. D. (1953). The Major Determinants in Normal and Pathological Gait. Journal of Bone and Joint Surgery, American Volume, 35(3), 543-558. https://doi.org/10.2106/00004623-195335030-00003.
[65] Lewis, C. L., Laudicina, N. M., Khuu, A., and Loverro, K. L. (2017). The human pelvis: variation in structure and function during gait. Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology, 300(4), 633-642. https://doi.org/ 10.1002/ar.23552.
[66] Dubousset, J., Charpak, G., Dorion, I., Skalli, W., Lavaste, F., Deguise, J., Kalifa, G., and Ferey, S. (2005). Le syste’me EOS. Nouvelle imagerie oste´o- articulaire basse dose en position debout. e-mémoires de l'Académie Nationale de Chirurgie, 4 (4), 22-27.
[67] Zhang, Y., Baker, J. S., Ren, X., Feng, N., and Gu, Y. (2015). Metatarsal strapping tightness effect to vertical jump performance. Human Movement Science, 41, 255-264. https://doi.org/10.1016/j.humov.2015.03.013.
[68] Wu, G., Liu, W., Hitt, J. R., and Millon, D. (2004). Spatial, temporal and muscle action patterns of Tai Chi gait. Journal of Electromyography and Kinesiology, 14(3), 343-354. https://doi.org/10.1016/j.jelekin.2003.09.002
[69] Mann, R. A., Hagy, J. L., White, V., and Liddell, D. (1979). The initiation of gait. Journal of Bone and Joint Surgery, American Volume, 61(2), 232-239. https://doi.org/10.2106/00004623-197961020-00011.
[70] Brenière, Y., Cuong, M., and Bouisset, S. (1987). Are dynamic phenomena prior to stepping essential to walking? Journal of Motor Behavior, 19(1), 62-76. https://doi.org/10.1080/00222895.1987.10735400.
[71] Hiraoka, K., Hatanaka, R., Nikaido, Y., Jono, Y., Nomura, Y., Tani, K., and Chujo, Y. (2014). Asymmetry of anticipatory postural adjustment during GAIT initiation. Journal of Human Kinetics, 42(1), 7-14. https://doi.org/10.2478/hukin-2014-0056.
[72] O’Kane, F. W., McGibbon, C. A., and Krebs, D. E. (2003). Kinetic analysis of planned gait termination in healthy subjects and patients with balance disorders. Gait & Posture, 17(2), 170-179. https://doi.org/10.1016/s0966-6362(02)00104-2.
[73] Ridge, S. T., Henley, J., Manal, K., Miller, F., and Richards, J. G. (2013). Kinematic and kinetic analysis of planned and unplanned gait termination in children. Gait & Posture, 37(2), 178-182. https://doi.org/10.1016/j.gaitpost.2012.06.030.
[74] Cen, X., Xu, D., Baker, J. S., and Gu, Y. (2020). Association of Arch Stiffness with Plantar Impulse Distribution during Walking, Running, and Gait Termination. International Journal of Environmental Research and Public Health, 17(6), 2090. https://doi.org/10.3390/ijerph17062090.
[75] Patla, A. E., Frank, J. S., Winter, D., Rietdyk, S., Prentice, S. D., and Prasad, S. K. (1993). Age-related changes in balance control system: initiation of stepping. Clinical Biomechanics, 8(4), 179-184. https://doi.org/10.1016/0268-0033(93)90012-7.
[76] Robinovitch, S. N., Feldman, F., Yang, Y., Schonnop, R., Leung, P. M., Sarraf, T. A., Sims-Gould, J., and Loughin, M. (2013). Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. The Lancet, 381(9860), 47-54. https://doi.org/10.1016/s0140-6736(12)61263-x.
[77] Tisserand, R., Robert, T., Chabaud, P., Bonnefoy, M., and Chèze, L. (2016). Elderly Fallers Enhance Dynamic Stability Through Anticipatory Postural Adjustments during a Choice Stepping Reaction Time. Frontiers in Human Neuroscience, 10, 613. https://doi.org/10.3389/fnhum.2016.00613.
[78] Lavangie, P.K., and Norkin, C.C. (2011). Joint Structure and Function: A Comprehensive Analysis. 5th ed. Philadelphia: F.A Davis Co.
[79] Gatts, S. (2008). A Tai Chi Chuan training model to improve balance control in older adults. Current Aging Science, 1(1), 68-70. https://doi.org/10.2174/1874609810801010068.
[80] Dugailly, P., De Santis, R., Tits, M., Sobczak, S., Vigne, A., and Feipel, V. (2015). Head repositioning accuracy in patients with neck pain and asymptomatic subjects: concurrent validity, influence of motion speed, motion direction and target distance. European Spine Journal, 24(12), 2885-2891. https://doi.org/10.1007/s00586-015-4263-9.
[81] Taylor, J. L., and McCloskey, D. (1988). Proprioception in the neck. Experimental Brain Research, 70(2). https://doi.org/10.1007/ bf00248360.
[82] Llinás, R. (2002). Qualia from a neuronal point of view. I of the Vortex. p. 216. Westwood: MIT Press.
[83] Huang, W-S. (1979). Fundamentals of Tai Chi Chuan. Hong Kong: South Sky Book Co.
[84] Wile, D. (1996). Lost Tai Chi Classics from the Late Ching Dynasty. Albany: State University of New York Press.
[85] Wen, F., and Swaim, L. (1999). Mastering Yang Style Taijiquan. Berkeley: North Atlantic Books.
[86] Cappozzo, A., Dellacroce, U., Leardini, A., and Chiari, L. (2005). Human movement analysis using stereophotogrammetry: Part 1: theoretical background. Gait & Posture, 21(2), 186-196. https://doi.org/10.1016/s0966-6362(04)00025-6.
[87] Ceccato, J., De Seze, M., Azevedo, C., and Cazalets, J. (2009). Comparison of Trunk Activity during Gait Initiation and Walking in Humans. PLOS ONE, 4(12), e8193. https://doi.org/10.1371/journal.pone.0008193.
[88] Lamoth, C. J. C., Meijer, O. G., Wuisman, P., Van Dieën, J. H., Levin, M. F., and Beek, P. J. (2002). Pelvis-Thorax coordination in the transverse plane during walking in persons with nonspecific low back pain. Spine, 27(4), E92-E99. https://doi.org/10.1097/ 00007632-200202150-00016.
[89] Feipel, V., De Mesmaeker, T., Klein, P., and Rooze, M. (2001). Three-dimensional kinematics of the lumbar spine during treadmill walking at different speeds. European Spine Journal, 10(1), 16-22. https://doi.org/10.1007/s005860000199.
[90] Callaghan, J. P., Patla, A. E., and McGill, S. M. (1999). Low back three-dimensional joint forces, kinematics, and kinetics during walking. Clinical Biomechanics, 14(3), 203-216. https://doi.org/10.1016/s0268-0033(98)00069-2.
[91] Crosbie, J., Vachalathiti, R., and Smith, R. M. (1997). Patterns of spinal motion during walking. Gait & Posture, 5(1), 6-12. https://doi.org/10.1016/s0966-6362(96)01066-1.
[92] Taylor, N. F., Goldie, P. A., and Evans, O. M. (1999). Angular movements of the pelvis and lumbar spine during self-selected and slow walking speeds. Gait & Posture, 9(2), 88-94. https://doi.org/10.1016/s0966-6362(99)00004-1.
[93] Neumann, D. A. (2010). Kinesiology of the musculoskeletal system: foundations for rehabilitation. 2nd ed. St. Louis: Mos-by/Elsevier.
[94] Bogduk, N. (2005). Clinical anatomy of the lumbar spine and sacrum. 4th ed. New York: Churchill Livingstone.
[95] Sekiya, N. (2008). Reconsidering the Six Determinants of Gait. The Japanese Journal of Rehabilitation Medicine, 45, 668-676. https://doi.org/10.2490/JJRMC.45.668.
[96] Crosbie, J., Vachalathiti, R., and Smith, R. M. (1997). Age, gender and speed effects on spinal kinematics during walking. Gait & Posture, 5(1), 13-20. https://doi.org/10.1016/s0966-6362(96)01068-5.
[97] Stokes, V., Andersson, C., and Forssberg, H. (1989). Rotational and translational movement features of the pelvis and thorax during adult human locomotion. Journal of Biomechanics, 22(1), 43-50. https://doi.org/10.1016/0021-9290(89)90183-8.
[98] O’Neill, M. C., Lee, L., Demes, B., Thompson, N. E., Larson, S. G., Stern, J. T., and Umberger, B. R. (2015). Three-dimensional kinematics of the pelvis and hind limbs in chimpanzee (Pan troglodytes) and human bipedal walking. Journal of Human Evolution, 86, 32-42. https://doi.org/10.1016/j.jhevol.2015.05.012.
[99] Kapandji, I. A. (2008). The Physiology of the Joints, Volume 3: The Vertebral Column, Pelvic Girdle and Head. 6th ed. London: Churchill Livingstone.
[100] Leinonen, V., Kankaanpää, M., Airaksinen, O., and Hänninen, O. (2000). Back and hip extensor activities during trunk flexion/extension: Effects of low back pain and rehabilitation. Archives of Physical Medicine and Rehabilitation, 81(1), 32-37. https://doi.org/10.1016/s0003-9993(00)90218-1.
[101] Champagne, A., Descarreaux, M., and Lafond, D. (2008). Back and hip extensor muscles fatigue in healthy subjects: task-dependency effect of two variants of the Sorensen test. European Spine Journal, 17(12), 1721-1726. https://doi.org/10.1007/s00586-008-0782-y.
[102] Descarreaux, M., Lafond, D., and Cantin, V. (2010). Changes in the flexion-relaxation response induced by hip extensor and erector spinae muscle fatigue. BMC Musculoskeletal Disorders, 11(1). https://doi.org/10.1186/1471-2474-11-112.
[103] Zemková, E., Cepková, A., and Muyor, J. M. (2021). The association of reactive balance control and spinal curvature under lumbar muscle fatigue. PeerJ, 9, e11969. https://doi.org/10.7717/peerj.11969.
[104] Lin, Y., Gfoehler, M., and Pandy, M. G. (2014). Quantitative evaluation of the major determinants of human gait. Journal of Biomechanics, 47(6), 1324-1331. https://doi.org/10.1016/j.jbiomech.2014.02.002.
[105] Warrener, A. G., Lewton, K., Pontzer, H., and Lieberman, D. E. (2015). A Wider Pelvis Does Not Increase Locomotor Cost in Humans, with Implications for the Evolution of Childbirth. PLOS ONE, 10(3), e0118903. https://doi.org/10.1371/journal.pone.0118903.
[106] Azuma, T., Ito, T., and Yamashita, N. (2007). Effects of changing the initial horizontal location of the center of mass on the antici-patory postural adjustments and task performance associated with step initiation. Gait & Posture, 26(4), 526-531. https://doi.org/10.1016/j.gaitpost.2006.11.203.
[107] Griffin, T. M., Roberts, T. J., and Kram, R. (2003). Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments. Journal of Applied Physiology, 95(1), 172-183. https://doi.org/10.1152/japplphysiol.00944.2002.
[108] Kram, R., and Taylor, C. R. (1990). Energetics of running: a new perspective. Nature, 346(6281), 265-267. https://doi.org/ 10.1038/346265a0.
[109] Ortega, J. D., and Farley, C. T. (2005). Minimizing center of mass vertical movement increases metabolic cost in walking. Journal of Applied Physiology, 99(6), 2099-2107. https://doi.org/10.1152/japplphysiol.00103.2005.
[110] Hamilton, N., Weimar, W., and Luttgens, K. (2007). Kinesiology: Scientific Basis of Human Motion. 11th ed. New York: McGraw-Hill.
[111] Chiacchiero, M., Dresely, B., Silva, U., DeLosReyes, R., and Vorik, B. (2010). The Relationship Between Range of Movement, Flexibility, and Balance in the Elderly. Topics in Geriatric Rehabilitation, 26(2), 148-155. https://doi.org/10.1097/tgr. 0b013e3181e854bc.
[112] Reddy, R. S., and Alahmari, K. A. (2016). Effect of Lower Extremity Stretching Exercises on Balance in Geriatric Population. International Journal of Health Sciences, 10(3), 389-395. https://doi.org/10.12816/0048733.
[113] Daoud, A. I., Geissler, G. J., Wang, F., Saretsky, J., Daoud, Y., and Lieberman, D. E. (2012). Foot strike and injury rates in en-durance runners: a retrospective study. Medicine and Science in Sports and Exercise, 44(7), 1325-1334. https://doi.org/10.1249/mss.0b013e3182465115.
[114] Lieberman, D. E., Venkadesan, M., Werbel, W. A., Daoud, A. I., D’Andrea, S. E., Davis, I. S., Mang’Eni, R. O., and Pitsiladis, Y. (2010). Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature, 463(7280), 531-535. https://doi.org/10.1038/nature08723.
[115] Barr, A. E., and Barbe, M. F. (2002). Pathophysiological tissue changes Associated with Repetitive movement: A review of the evidence. Physical Therapy, 82(2), 173-187. https://doi.org/10.1093/ptj/82.2.173.
[116] Lamoth, C. J., Beek, P. J., and Meijer, O. G. (2002). Pelvis-thorax coordination in the transverse plane during gait. Gait & Posture, 16(2), 101-114. https://doi.org/10.1016/s0966-6362(01)00146-1.
[117] Redfern, M. S., and DiPasquale, J. (1997). Biomechanics of descending ramps. Gait & Posure, 6(2), 119-125. https://doi.org/10. 1016/s0966-6362(97)01117-x.
[118] Redfern, M. S., Cham, R., Gielo-Perczak, K., Grönqvist, R., Hirvonen, M., Lanshammar, H., Marpet, M. I., Pai, C. Y., and Pow-ers, C. M. (2001). Biomechanics of slips. Ergonomics, 44(13), 1138-1166. https://doi.org/10.1080/00140130110085547.
[119] Strandberg, L. (1983). On accident analysis and slip-resistance measurement. Ergonomics, 26(1), 11-32. https://doi.org/10.1080/ 00140138308963309.
[120] Lloyd, D.G., and Stevenson, M.G. (1992). An investigation of floor surface profile characteristics that will reduce the incidence of slips and falls. Mechanical Engineering Transaction Institution of Engineers (Australia), ME17 (2), 99-104.
[121] Hanson, J. P., Redfern, M. S., and Mazumdar, M. (1999). Predicting slips and falls considering required and available friction. Ergonomics, 42(12), 1619-1633. https://doi.org/10.1080/001401399184712.
[122] Calais-Germain, B., and Lamotte, A. (2002). Anatomie pour le mouvement 2: Bases d'exercices. Chambéry: Désiris.