magazinelogo

Journal of Applied Mathematics and Computation

ISSN Print: 2576-0645 Downloads: 145422 Total View: 1795284
Frequency: quarterly ISSN Online: 2576-0653 CODEN: JAMCEZ
Email: jamc@hillpublisher.com
Article Open Access http://dx.doi.org/10.26855/jamc.2020.09.001

A Dynamic Model of Superhelical DNA Denaturation

Cheryl L. Sershen

Department of Computational and Applied Mathematics, George R. Brown School of Engineering, Rice University, 6100 Main Street, Houston TX 77251, USA.

*Corresponding author: Cheryl L. Sershen

Published: July 7,2020

Abstract

Existing models of structural transitions in DNA only analyze their equilibrium properties. But the biological environment within a cell is inconstant dynamic flux. The DNA molecule is affected by numerous biological processes such as protein binding, transcription, replication, recombination, and repair. Equilibrium-based models only portray molecular properties in the thermodynamic limit and do not reflect the near-term dynamic effects of such events. Developing accurate non-equilibrium dynamic models is essential to understand these effects. Here we present a dynamic statistical mechanical model of the response of a DNA molecule to superhelical stresses in an evolving biological environment. The master equation developed here allows us to treat secondary structural transitions, which have not been considered in previous non-equilibrium statistical mechanical studies of DNA. We focus specifically on superhelical denaturation, extending to a non-equilibrium context the approach taken by the equilibrium stress-induced duplex destabilization (SIDD) model. Our model is implemented as a time-dependent simulation using Glauber dynamics. The measures calculated include time-series distributions, such as the time-dependent energies and probabilities of opening for each base pair in the DNA molecule. Our approach enables the development of more nuanced models of in vivo DNA regulatory mechanisms and other normal and pathological processes.

References

[1] Kouzine, F. and Levens, D. (2007). Supercoil-driven DNA structures regulate genetic transactions. Front. Biosci. vol. 12, pp. 4409-4423. 

[2] Blake, R. D., Bizzaro, J. W., Blake, J. D., Day, G. R., Delcourt, S. G., Knowles, J., Marx, K. A. and SantaLucia, J., Jr. (1999). Statistical Mechanical Simulation of Polymeric DNA Melting with MELTSIM. Bioinformatics, vol. 15, no. 5, pp 370-375. 

[3] Yang, H., Zhuo, Y., and Wu, X. (1994). Investigation of Thermal Denaturation of DNA Molecules based on Non-equilibrium Transport Approach. J. Phys. A Math. Gen, vol. 27, pp. 6147-6156. 

[4] Lubensky, D. K., Nelson, D. R. (2000). Pulling Pinned Polymers and Unzipping DNA. Phys. Rev. Lett. vol. 85, no. 7, pp. 1572-1575. 

[5] Sheridan, S., Benham, C. J., and Hatfield, G. W. (1998). Activation of gene Expression by a Novel DNA Structural Transmission Mechanism That Requires Supercoiling-induced DNA Duplex Destabiliation in an Upstream Activating Sequence. J. Biol. Chem. vol. 273, no. 33, pp. 21298-21308. 

[6] Fye, R. M. and Benham, C. J. (1999). Exact Method for Numerically Analyzing a Model of Local Denaturation in Superhelically Stressed DNA. Phys. Rev. E vol. 59, pp. 3408-3426. 

[7] Erzberger, J. P., Barsky, D., Scharer, O. D., Colvin, M. E., and Wilson, III, D. M. (1998). Elements in abasic site recognition by the major human and Escherichia coli apurinic/apyrimidinic endonucleases. Nucleic Acids Res. vol. 26, no. 11, pp. 2771-2778. 

[8] Craigie, R. (2001). HIV Integrase, a Brief Overview from Chemistry to Therapeutics. J. of Biol. Chem. vol. 276, no. 26, pp. 23213-23216. 

[9] Cantor, C. and Schimmel, P. (1980). Biophysical Chemistry. W.H. Freeman and Company, San Francisco. 

[10] Bi, C. and Benham, C. J. (2004). WebSIDD: Server for predicting of the Stress-induced Duplex Destabilized (SIDD) Sites in Superhelical DNA. Bioinformatics, vol. 20, pp. 1477-1479. 

[11] Benham, C. J. (2001). Stress-Induced DNA Duplex Destabilization in Transcriptional Regulation. World Scientific, Proceedings of the 2001 PacificSymposium on Biocomputing (refereed), pp. 103-114. 

[12] Wang, H., Noordewier, M., and Benham, C. J. (2004). Stress-Induced DNA Duplex Destabilization (SIDD) in the Escherichia coli Genome: SIDD Sites are Closely Associated with Promoters. Genome Res. vol. 14, pp. 1575-1584. 

[13] Sershen, C. L., Mell, J. C., Madden, S. M., and Benham, C. J. Superhelical Duplex Destabilization and the Recombination Position Effect. Plos One 6(6): e20798. doi:10.1371/journal.pone.0020798. 

[14] Benham, C. J. (1992). Energetics of the strand separation transition in superhelical DNA, J. Mol. Biol. vol. 225, no. 835, pp. 835-847. 

[15] Wang, J. C. (1979). Helical repeat of DNA in solution. Proc. Natl. Acad. Sci. vol. 76, no. 1, pp. 200-203. 

[16] Glauber, R. J. (1963). Time-Dependent Statistics of the Ising Model, J. Math. Phys. vol. 4, p. 294 (1963). 

[17] Privman, V. (1997). Nonequilibrium Statistical Mechanics in One Dimension. Cambridge University Press. 

[18] Fehske, H., Schneider, R., and Weisse, A. (2007). Computational Many-Particle Physics. Springer. 

[19] Baumgartner, A. and Binder, K. (1978). Dynamics of the Generalized Glauber-Ising Chain in a Magnetic Field. J. Stat. Phys. vol. 18, no. 5, pp. 423-444. 

[20] Aranda, A., Perez-Ortin, J. E., Benham, C. J., and Del Olmo, M. L. (1997). Analysis of the Structure of a Natural Alternating d(TA)n Sequence in Yeast Chromatin. Yeast vol. 13, pp. 313-326. 

[21] Sun, H., Mezel, M., Fye, R., and Benham, C. J. (1995). Monte Carlo analysis of conformational transitions in superhelical DNA. J. Chem. Phys. vol. 103, pp. 8653-65. 

[22] Vologodskii, A. (2006). Simulation of equilibrium and dynamics properties of large DNA molecules, Computational Studies of DNA and RNA. Springer, pp. 579-604. 

[23] Mielke, S. P., Gronbech-Jensen, N., Krishnan, V. V., Fink,W. H., and Benham, C. J. (2005). Brownian dynamics simulations of sequence-dependent duplex denaturation dynamically superhelical DNA. J. Chem. Phys., vol. 123, no. 124911. 

[24] Duzdevich, D., Redding, S, and Greene, E. C. (2014). DNA dynamics and Single -Molecule Biology. Chem Rev. 

[25] Baranello, L., and Kouzine. (2012). The importance of being supercoiled: How DNA mechanics regulate dynamic processes. BBA.

[26] Irobalieva, et al. (2015). Structural Diversity of supercoiled DNA. Nature Communications.

How to cite this paper

A Dynamic Model of Superhelical DNA Denaturation

How to cite this paper: Cheryl L. Sershen. (2020) A Dynamic Model of Superhelical DNA Denaturation. Journal of Applied Mathematics and Computation, 4(3), 43-56.

DOI: http://dx.doi.org/10.26855/jamc.2020.09.001