References
[1] S. Bhuiyan, M. Sattar, M. Khan. (1995). Improving water use efficiency in rice irrigation through wet-seeding. Irrigation Science, 16(1): 1-8.
[2] A. D. Roy, T. Shah. (2002). Socio-ecology of groundwater irrigation in India, Intensive use of groundwater challenges and opportunities (2002): 307-335.
[3] R. Rattan, S. Datta, P. Chhonkar, K. Suribabu, A. Singh. (2005). Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwatera case study. Agriculture, Ecosystems & Environment, 109(3-4): 310-322.
[4] L. Richards, L. Weaver. (1944). Moisture retention by some irrigated soils as related to soil moisture tension. Journal of Agri-cultural Research, 69(6): 215-235.
[5] N. Edlefsen, A. Anderson, et al. (1943). Thermodynamics of soil moisture. Hilgardia, 15(2): 31-298.
[6] O. T. Denmead, R. H. Shaw. (1962). Availability of soil water to plants as affected by soil moisture content and meteorological conditions 1. Agronomy Journal, 54(5), 385-390.
[7] G. S. Campbell, M. D. Campbell. (1982). Irrigation scheduling using soil moisture measurements: theory and practice. Advances in Irrigation, 1(1982): 25-42.
[8] N. Bhawarkar, D. Pande, R. Sonone, M. Aaquib, P. Pandit, P. Patil. (2014). Literature review for automated water supply with monitoring the performance system. International Journal of Current Engineering and Technology, 4(5): 3328-3331.
[9] Z. Zhang. (2004). Investigation of wireless sensor networks for precision agriculture. in: 2004 ASAE Annual Meeting, American Society of Agricultural and Biological Engineers, 2004, p. 1.
[10] S.-e. Yoo, J.-e. Kim, T. Kim, S. Ahn, J. Sung, D. Kim. (2007). A2S: Automated Agriculture System Based on WSN, in: Con-sumer Electronics, 2007. ISCE 2007. IEEE International Symposium on, IEEE, 2007, pp. 1-5.
[11] A. Z. Abbasi, N. Islam, Z. A. Shaikh, et al. (2014). A review of wireless sensors and networks’ applications in agriculture, Computer Standards & Interfaces 36(2): 263-270.
[12] X. Li, Y. Deng, L. Ding. (2008). Study on precision agriculture monitoring framework based on WSN, in: Anti-counterfeiting, Security and Identification, 2008. ASID 2008. 2nd International Conference on, IEEE, 2008, pp. 182-185.
[13] V. I. Adamchuk, J. Hummel, M. Morgan, S. Upadhyaya. (2004). On-the-go soil sensors for precision agriculture, Computers and electronics in agriculture, 44(1): 71-91.
[14] M. Sivapalan, R. A.Woods. (1995). Evaluation of the effects of general circulation models’ subgrid variability and patchiness of rainfall and soil moisture on land surface water balance fluxes, Hydrological Processes, 9(5-6): 697-717.
[15] [link]URL https://openweathermap.org/city/1260107.
[16] M. A. Hamad, M. E. S. Eltahir, A. E. M. Ali, A. M. Hamdan. Efficiency of using smart-mobile phones in accessing agricultural information by smallholder farmers in north kordofan–sudan, Available at SSRN 3240758.
[17] F. Balducci, D. Impedovo, G. Pirlo. (2018). Machine learning applications on agricultural datasets for smart farm enhancement, Machines, 6(3): 38.
[18] J. S. Duhan, R. Kumar, N. Kumar, P. Kaur, K. Nehra, S. Duhan. (2017). Nanotechnology: The new perspective in precision agriculture, Biotechnology Reports, 15(2017): 11-23.
[19] G. Severino, G. DUrso, M. Scarfato, G. Toraldo. (2018). The IoT as a tool to combine the scheduling of the irrigation with the geostatistics of the soils, Future Generation Computer Systems.
[20] H. L. Tuomisto, P. F. Scheelbeek, Z. Chalabi, R. Green, R. D. Smith, A. Haines, A. D. Dangour. (2017). Effects of environ-mental change on agriculture, nutrition and health: A framework with a focus on fruits and vegetables, Wellcome open research 2.
[21] H. Navarro-Hell´ın, R. Torres-Sa´nchez, F. Soto-Valles, C. Albaladejo-Pe´rez, J. A. Lo´pez-Riquelme, R. Domingo- Miguel. (2015). A wireless sensors architecture for efficient irrigation water management, Agricultural Water Management, 151(2015): 64-74.
[22] T. Ojha, S. Misra, N. S. Raghuwanshi. (2015). Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges, Computers and Electronics in Agriculture, 118(2015): 66-84.
[23] G. Rameshaiah, J. Pallavi, S. Shabnam. (2015). Nano fertilizers and nano sensors—an attempt for developing smart agriculture, Int J Eng Res Gen Sci, 3(1): 314-320.
[24] K. X. Soulis, S. Elmaloglou, N. Dercas. (2015). Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems, Agricultural Water Management, 148: 258-268.
[25] S. L. SU, D. Singh, M. S. Baghini. (2014). A critical review of soil moisture measurement, Measurement, 54(2014): 92-105.
[26] H. Mittelbach, I. Lehner, S. I. Seneviratne. (2012). Comparison of four soil moisture sensor types under field conditions in Switzerland, Journal of Hydrology 430(2012): 39-49.
[27] R.-b. Zhang, J.-j. Guo, L. Zhang, Y.-c. Zhang, L.-h. Wang, Q. Wang. (2011). A calibration method of detecting soil water content based on the information-sharing in wireless sensor network, Computers and Electronics in Agriculture, 76(2): 161-168.
[28] J. Xia, Z. Tang, X. Shi, L. Fan, H. Li. (2011). An environment monitoring system for precise agriculture based on wireless sensor networks, in: Mobile Ad-hoc and Sensor Networks (MSN), 2011 Seventh International Conference on, IEEE, 2011, pp. 28-35.
[29] G. Vellidis, M. Tucker, C. Perry, C. Kvien, C. Bednarz. (2008). A real-time wireless smart sensor array for scheduling irrigation, Computers and electronics in agriculture, 61(1): 44-50.
[30] N. Wang, N. Zhang, M. Wang. (2006). Wireless sensors in agriculture and food industry recent development and future pers-pective, Computers and electronics in agriculture, 50(1): 1-14.
[31] B. Domenico, J. Caron, E. Davis, S. Nativi, L. Bigagli. (2006). Galeon: standards-based web services for interoperability among earth sciences data systems, in: Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006. IEEE International Conference on, IEEE, 2006, pp. 313-316.
[32] V. M. Quan, G. S. Gupta, S. Mukhopadhyay. (2011). Review of sensors for greenhouse climate monitoring, in: Sensors Appli-cations Symposium (SAS), 2011 IEEE, IEEE, 2011, pp. 112-118.
[33] N. Tianlong. (2010). Application of single bus sensor dht11 in temperature humidity measure and control system [J], Micro-controllers & Embedded Systems, 6(2010): 026.
[34] Z. Alliance. What is zigbee?
[35] G. of Punjab. Economic and Statistical Organisation, Govt. of Punjab, publication No. 954 Edition.
[36] R. Morais, M. A. Fernandes, S. G. Matos, C. Seroˆdio, P. Ferreira, M. Reis. (2008). Azigbeemulti-poweredwireless acquisition device for remote sensing applications in precision viticulture, Computers and electronics in agriculture, 62(2): 94-106.
[37] M. Keshtgari, A. Deljoo. (2012). A wireless sensor network solution for precision agriculture based on zigbee technology, Wireless Sensor Network, 4(1): 25.
[38] S. Salvi, S. F. Jain, H. Sanjay, T. Harshita, M. Farhana, N. Jain, M. Suhas. (2017). Cloud based data analysis and monitoring of smart multi-level irrigation system using iot, in: I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2017 Inter-national Conference on, IEEE, 2017, pp. 752-757.
[39] R. O. Darko, Y. Shouqi, L. Junping, Y. Haofang, Z. Xingye. (2017). Overview of advances in improving uniformity and water use efficiency of sprinkler irrigation, International Journal of Agricultural and Biological Engineering, 10(2): 1.
[40] R. Gonz´alezPerea, A. Daccache, J. Rodr´ıguezD´ıaz, E. Camacho Poyato, J. W. Knox. (2018). Modelling impacts of precision irrigation on crop yield and in-field water management.
[41] A. Tyagi, N. Gupta, J. Navani, M. R. Tiwari, M. A. Gupta. (2017). Smart irrigation system, International Journal for Innovative Research in Science & Technology, 3(10).
[42] F. Viani, M. Bertolli, M. Salucci, A. Polo. (2017). Low-cost wireless monitoring and decision support for water saving in agri-culture, IEEE Sensors Journal, 17(13): 4299-4309.
[43] T. Yamazaki, K. Miyakawa. (2017). Soil moisture sensing experiments for water management in pear fields, in: Proceedings of the 6th International Conference on Informatics, Environment, Energy and Applications, ACM, 2017, pp. 56-59.
[44] B. Kaur, K. Vatta, R. Sidhu. (2015). Optimising irrigation water use in Punjab agriculture: Role of crop diversification and technology, Indian Journal of Agricultural Economics, 70(3): 307.
[45] L. Levidow, D. Zaccaria, R. Maia, E. Vivas, M. Todorovic, A. Scardigno. (2014). Improving water-efficient irrigation: Prospects and difficulties of innovative practices, Agricultural Water Management, 146(2014): 84-94.
[46] K. Xiao, D. Xiao, X. Luo. (2010). Smart water-saving irrigation system in precision agriculture based on wireless sensor network, Transactions of the Chinese Society of Agricultural Engineering, 26(11): 170-175.
[47] S. J. Zwart, W. G. Bastiaanssen. (2004). Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize, Agricultural water management, 69(2): 115-133.