References
[1] Tiesinga, E., Mohr, P. J., Newell, D. B., et al. (2021). CODATA Recommended Values of the Fundamental Physical Constants: 2018. Journal of Physical and Chemical Reference Data, 50(3), 033105.
[2] Lunney, D., Pearson, J. M., Thibault, C. (2003). Recent trends in the determination of nuclear masses. Reviews of Modern Physics, 75(3), 1021-1082.
[3] Blaum, K., Litvinov, Y. A. (2013). 100 years of mass spectrometry. International Journal of Mass Spectrometry, 349-350, 1-2.
[4] Famiano, M. A. (2019). Nuclear mass measurements with radioactive ion beams. International Journal of Modern Physics E, 28(04), 1930005.
[5] Yamaguchi, T., Koura, H., Litvinov, Y. A., et al. (2021). Masses of exotic nuclei. Progress in Particle and Nuclear Physics, 120, 103882.
[6] Zhang, P., Xu, X., Shuai, P., et al. (2017). High-precision Q_EC values of superallowed 0+→0+ β- emitters 46Cr, 50Fe, and 54Ni. Physics Letters B, 767, 20-24.
[7] Bohr, A., Mottelson, B. R. (1998). Nuclear Structure. World Scientific Publishing Company.
[8] Zhang, J.-Y., Casten, R. F., Brenner, D. S. (1989). Empirical proton-neutron interaction energies. Linearity and saturation phenomena. Physics Letters B, 227(1), 1-5.
[9] Brown, B. A. (2013). Nuclear Pairing Gap: How Low Can It Go? Physical Review Letters, 111(16), 162502.
[10] Mumpower, M. R., Surman, R., McLaughlin, G. C., et al. (2016). The impact of individual nuclear properties on r-process nucleo-synthesis. Progress in Particle and Nuclear Physics, 86, 86-126.
[11] Horowitz, C. J., Arcones, A., Côté, B., et al. (2019). r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. Journal of Physics G: Nuclear and Particle Physics, 46(8), 083001.
[12] Cowan, J. J., Sneden, C., Lawler, J. E., et al. (2021). Origin of the heaviest elements: The rapid neutron-capture process. Reviews of Modern Physics, 93(1), 015002.
[13] Zhang, Z. H. (2016). The development and insights of machine learning. Communications of the China Computer Federation, 012(011), 55-60.
[14] Tsinghua University's Institute for Artificial Intelligence, Joint Research Center for Knowledge & Intelligence of Tsinghua-CAE (Chinese Academy of Engineering). (2021). Report on the Development of Artificial Intelligence in China 2011-2020. [R/OL].
[15] Callaway, E. (2020). ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. Nature, 588(7837), 203-204.
[16] Tunyasuvunakool, K., Adler, J., Wu, Z., et al. (2021). Highly accurate protein structure prediction for the human proteome. Nature, 596(7873), 590-596.
[17] Stevens, R., Taylor, V., Nichols, J., et al. (2020). AI for Science: Report on the Department of Energy (DOE) Town Halls on Artificial Intelligence (AI) for Science [R].
[18] Bedaque, P., Boehnlein, A., Cromaz, M., et al. (2021). A.I. for nuclear physics. The European Physical Journal A, 57(3), 100.
[19] Pang, L. G., Zhou, K., Wang, X. N., et al. (2020). Applications of deep learning in nuclear physics. Review of Nuclear Physics, 37(3), 720-726.
[20] Huang, W. J., Wang, M., Kondev, F. G., et al. (2021). The AME 2020 atomic mass evaluation (I). Evaluation of input data, and adjustment procedures. Chinese Physics C, 45(3), 030002.
[21] Thoennessen, M. (2021). Discovery of Nuclides Project. Retrieved October 3, 2021, from https://people.nscl.msu.edu/~thoennes/isotopes/index.html.
[22] Erler, J., Birge, N., Kortelainen, M., et al. (2012). The limits of the nuclear landscape. Nature, 486(7404), 509-512.