References
[1] A. A. Melkman and C. A. Micchelli. “Optimal estimation of linear operators in Hilbert spaces from inaccurate data.” SIAM J. Numer. Anal., vol. 16, no. 1, pp. 87-105, 1979.
[2] C. A. Micchelli. “Optimal estimation of linear operators from inaccurate data: a second look.” Numer. Algorithms, vol. 5, pp. 375-390, 1993.
[3] V.-E. Brunel. “Adaptive estimation of convex polytopes and convex sets from noisy data.” Electron. J. Stat., vol. 7, 1301-1327, 2013.
[4] G. Kovacova and B. Rudloff. “Convex projection and convex multi-objective optimization.” J. Glob. Optim., vol. 83, no. 2, pp. 301-327, 2022.
[5] A. Lohne, F. Zhao, and L. Shao. “On the approximation error for approximating convex bodies using multiobjective optimization.” Appl. Set-Valued Anal. Optim., vol. 3, no. 3, pp. 341-354, 2021.
[6] B. Jacobs, B. Westerbaan, and B. Westerbaan. “States of convex sets,” in Foundations of Software Science and Computation Structures: 18th International Conference, FOSSACS 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings 18, Springer, pp. 87-101, 2015.
[7] N. Endou, T. Mitsuishi, and Y. Shidama. “Convex sets and convex combinations.” Formaliz. Math., vol. 11, no. 1, pp. 53-58, 2003.
[8] W. Gustin. “On the interior of the convex hull of a Euclidean set.” Bull. Amer. Math. Soc., vol. 53, 299-301, 1947.
[9] B. Kleiner and B. Leeb. “Rigidity of invariant convex sets in symmetric spaces.” Invent. Math., vol. 163., no. 3, 657-676, 2004.
[10] P. H. Edelman and R. E. Jamison. “The theory of convex geometries.” Geom. Dedicata, vol. 19, no. 3, pp. 247-270, 1985.
[11] R. R. Phelps. “A representation theorem for bounded convex sets.” Proc. Am. Math. Soc., vol. 11, no. 6, pp. 976-983, 1960.
[12] A. H. Fuller, M. Hartz, and M. Lupini. “Boundary representations of operator spaces, and compact rectangular matrix convex sets.” J. Operator Theory, vol. 79, no. 1, 139-172, 2016.
[13] M. Reitzner. “Random points on the boundary of smooth convex bodies.” Trans. Am. Math. Soc., vol. 354, no. 6, pp. 2243-2278, 2002.
[14] R. Wenger. “Upper bounds on geometric permutations for convex sets.” Discrete Comput. Geom., vol. 5, pp. 27-33, 1990.
[15] D. Dorfler. “On the approximation of unbounded convex sets by polyhedral.” J. Optim. Theory Appl., vol. 194, no. 1, pp. 265-287, 2022.
[16] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.
[17] L. L. Dines. “Convex extension and linear inequalities.” Bull. Amer. Math. Soc., vol. 42, no. 6, 353-365, 1936.
[18] L. L. Dines and N. H. McCoy. “On Linear Inequalities.” Traces Emerg. Nonlinear Program., pp. 359-392, 2014.