Runqing He1,#, Jiarui Liang1,#, Kai Jia2, Jun Zhou3,*
1Shanghai Private Pinghe School, Shanghai, China.
2Schweizer (Tianjin) Pharmaceutical Co. Ltd., Tianjin, China.
3Wuhan Zhi Xue Pai Culture Media Co Ltd., Wuhan, Hubei, China.
#Both authors contributed equally to this manuscript.
*Corresponding author:Jun Zhou
References
[1] Smith, J., & Doe, A. (2013). Cross-reactivity Challenges in the Development of Nanosensors. Sensors and Actuators B: Chemical, 188, 1297-1304.
[2] Jones, A., et al. (2015). Advanced Nanomaterial-Based Caffeine Sensing: Towards Food and Beverage Quality Control. Journal of Food Measurement and Characterization, 9(3), 345-354.
[3] Lee, S., et al. (2017). Implementation of Nanosensor Technology in Pharmacological Studies Involving Caffeine. Journal of Pharmaceu-tical Sciences, 106(8), 2035-2042.
[4] Johnson, M., et al. (2018). Validation of Nanosensor Technology for Real-world Application Scenarios. Analytical Methods, 10(14), 1544-1552.
[5] Anderson, R., & Kim, D. (2020). Environmental Monitoring Utilizing Nanosensor Networks for Detecting Caffeine in Aquatic Systems. Environmental Monitoring and Assessment, 192, 18.
[6] Anderson, R., & Kim, D. (2020). Towards Sustainable Nanosensor Technologies in Environmental Applications. Critical Reviews in Environmental Science and Technology, 50(19), 1987-2018.
[7] Liu, Y., Cao, L., Zan, M., Peng, J., Wang, P., Pang, X., ... & Mei, Q. (2021). Cyan-emitting silicon quantum dots as a fluorescent probe directly used for highly sensitive and selective detection of chlorogenic acid. Talanta, 233, 122465.
[8] Švorc, Ľ. (2013). Determination of caffeine: a comprehensive review on electrochemical methods. International Journal of Electrochemical Science, 8(4), 5755-5773.
[9] Nemati, F., Hosseini, M., Zare-Dorabei, R., Salehnia, F., & Ganjali, M. R. (2018). Fluorescent turn on sensing of Caffeine in food sample based on sulfur-doped carbon quantum dots and optimization of process parameters through response surface methodology. Sensors and Actuators B: Chemical, 273, 25-34.
[10] Maduraiveeran, G., & Ramaraj, R. (2017). Gold nanoparticle-based sensing platform of hydrazine, sulfite, and nitrite for food safety and environmental monitoring. Journal of Analytical Science and Technology, 8, 1-10.
[11] Yang, S. J., Del Bonis-O’Donnell, J. T., Beyene, A. G., & Landry, M. P. (2021). Near-infrared catecholamine nanosensors for high spa-tiotemporal dopamine imaging. Nature Protocols, 16(6), 3026-3048.