References
[1] S. Kiwan, A. Al-Nimr. (2001). Using Porous Fins for Heat Transfer Enhancement. ASME J. Heat Transfer, 2001, 123: 790-5.
[2] S. Kiwan. (2007a). Effect of radiative losses on the heat transfer from porous fins. Int. J. Therm. Sci., 46, 1046-1055.
[3] S. Kiwan. (2007b). Thermal analysis of natural convection porous fins. Tran. Porous Media, 67, 17-29.
[4] S. Kiwan, O. Zeitoun. (2008). Natural convection in a horizontal cylindrical annulus using porous fins. Int. J. Numer. Heat Fluid Flow, 18(5), 618-634.
[5] R. S. Gorla, A. Y. Bakier. (2011). Thermal analysis of natural convection and radiation in porous fins. Int. Commun. Heat Mass Transfer, 38, 638-645.
[6] B. Kundu, D. Bhanji. (2011). An analytical prediction for performance and optimum design analysis of porous fins. Int. J. Refri-geration, 34, 337-352.
[7] B. Kundu, D. Bhanja, K. S. Lee. (2012). A model on the basis of analytics for computing maximum heat transfer in porous fins. Int. J. Heat Mass Transfer, 55(25-26), 7611-7622.
[8] A. Taklifi, C. Aghanajafi, H. Akrami. (2010). The effect of MHD on a porous fin attached to a vertical isothermal surface. Transp Porous Med., 85, 215-31.
[9] D. Bhanja, B. Kundu. (2011). Thermal analysis of a constructal T-shaped porous fin with radiation effects. Int J Refrigerat, 34, 1483-96.
[10] B. Kundu. (2007). Performance and optimization analysis of SRC profile fins subject to simultaneous heat and mass transfer. Int. J. Heat Mass Transfer, 50, 1545-1558.
[11] S. Saedodin, S. Sadeghi. (2013). Temperature distribution in long porous fins in natural convection condition. Middle-east J. Sci. Res., 13(6), 812-817.
[12] S. Saedodin, M. Olank. (2011). Temperature Distribution in Porous Fins in Natural Convection Condition. Journal of American Science, 7(6), 476-481.
[13] M. T. Darvishi, R. Gorla, R. S., Khani, F., Aziz, A.-E. (2015). Thermal performance of a porus radial fin with natural convection and radiative heat losses. Thermal Science, 19(2), 669-678.
[14] M. Hatami, D. D. Ganji. (2013). Thermal performance of circular convective-radiative porous fins with different section shapes and materials. Energy Conversion and Management, 76, 185-193.
[15] M. Hatami, D. D. Ganji. (2014). Thermal behavior of longitudinal convective-radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4). International of J. Ceramics International, 40, 6765-6775.
[16] M. Hatami, A. Hasanpour, D. D. Ganji. (2013). Heat transfer study through porous fins (Si3N4 and AL) with tempera-ture-dependent heat generation. Energ. Convers. Manage, 74, 9-16.
[17] M. Hatami, D. D. Ganji. (2014). Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis. International Journal of Refrigeration, 40, 140-151.
[18] M. Hatami, G. H. R. M. Ahangar, D. D. Ganji, K. Boubaker. (2014). Refrigeration efficiency analysis for fully wet semi-spherical porous fins. Energy Conversion and Management, 84, 533-540.
[19] R. Gorla, R. S., Darvishi, M. T. Khani, F. (2013). Effects of variable Thermal conductivity on natural convection and radiation in porous fins. Int. Commun. Heat Mass Transfer, 38, 638-645.
[20] A. Moradi, T. Hayat and A. Alsaedi. (2014). Convective-radiative thermal analysis of triangular fins with temperature-dependent thermal conductivity by DTM. Energy Conversion and Management, 77, 70-77.
[21] S. Saedodin. M. Shahbabaei. (2013). Thermal Analysis of Natural Convection in Porous Fins with Homotopy Perturbation Method (HPM). Arab J Sci Eng., 38: 2227-2231.
[22] H. Ha, Ganji D. D., and Abbasi M. (2005). Determination of Temperature Distribution for Porous Fin with Tempera-ture-Dependent Heat Generation by Homotopy Analysis Method. J Appl Mech Eng., 4(1).
[23] H. A. Hoshyar, I. Rahimipetroudi, D. D. Ganji, A. R. Majidian. (2015). Thermal performance of porous fins with tempera-ture-dependent heat generation via Homotopy perturbation method and collocation method. Journal of Applied Mathematics and Computational Mechanics, 14(4), 53-65.
[24] Y. Rostamiyan, D. D. Ganji, I. R. Petroudi, and M. K. Nejad. (2014). Analytical Investigation of Nonlinear Model Arising in Heat Transfer Through the Porous Fin. Thermal Science, 18(2), 409-417.
[25] S. E. Ghasemi, P. Valipour, M. Hatami, D. D. Ganji. (2014). Heat transfer study on solid and porous convective fins with tem-perature-dependent heat-generation using efficient analytical method. J. Cent. South Univ., 21, 4592-4598.
[26] I. R. Petroudi, D. D. Ganji, A. B. Shotorban, M. K. Nejad, E. Rahimi, R. Rohollahtabar and F. Taherinia. (2012). Semi-Analytical Method for Solving Nonlinear Equation Arising in Natural Convection Porous fin. Thermal Science, 16(5), 1303-1308.
[27] M. G. Sobamowo. (2016). Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation using Galerkin’s method of weighted residual. Applied Thermal Engineering, 99, 1316-1330.
[28] S. Abbasbandy, E. Shivanian, and I. Hashim. (2011). Exact analytical solution of a forced convection in porous-saturated duct. Comm. Nonlinear Sci Numer Simulat. 16, 3981-3989.