References
[1] Annette Boles, Ramesh, Kandimalla, P Hemachandra Reddy. (2017). Dynamics of diabetes and obesity: Epidemiological pers-pective.Biochim Biophys Acta Mol Basis Dis. 2017 May; 1863(5): 1026-1036.
[2] D. J. Kim, M. S. Lee, K. W. Kim, M. K. Lee. (2001). Insulin secretory dysfunction and insulin resistance in the pathogenesis of korean type 2 diabetes mellitus. Metabolism. 2001 May; 50(5): 590-3.
[3] Shulman, G. I. (2000). Cellular mechanisms of insulin resistance. J Clin Invest. 2000 Jul; 106(2): 171-6.
[4] Saltiel, A. R., and Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001 Dec 13; 414(6865): 799-806.
[5] Tetsuya Kubota, Naoto Kubota, Takashi Kadowaki. (2017). Imbalanced Insulin Actions in Obesity and Type 2 Diabetes: Key Mouse Models of Insulin Signaling Pathway. Cell Metab. 2017 Apr 4; 25(4): 797-810.
[6] Saltiel, A. R., Pessin, J. E. (2002). Insulin signaling pathways in time and space. Trends Cell Biol. 2002 Feb; 12(2): 65-71.
[7] Hiroyuki Yano, Mashito Sakai, Toshiya Matsukawa, Takashi Yagi, Takao Naganuma, et al. (2018). PHD3 regulates glucose metabolism by suppressing stress-induced signalling and optimising gluconeogenesis and insulin signalling in hepatocytes.Sci Rep. 2018 Sep 24; 8(1): 14290.
[8] Choudhury, A. I., Heffron, H., Smith, M. A., Al-Qassab, H., Xu, A. W., Selman, C., et al. (2005). The role of insulin receptor substrate 2 in hypothalamic and β cell function. J. Clin. Invest. 2005 Apr; 115(4): 940-50. Epub 2005 Mar 24.
[9] Farh, K. K., Grimson, A., Jan, C., Lewis, B. P., Johnston, W. K., Lim, L. P. (2005). The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science. 2005 Dec 16; 310(5755): 1817-21. Epub 2005 Nov 24.
[10] Flynt, A. S., Lai, E. C. (2008). Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet. 2008 Nov; 9(11): 831-42.
[11] Leeper, N. J., Cooke, J. P. (2011). MicroRNA and mechanisms of impaired angiogenesis in diabetes mellitus. Circulation, 2011 Jan 25; 123(3): 236-8. Epub 2011 Jan 10.
[12] Yury O Nunez Lopez, Gabriella Garufi, Attila A Seyhan. (2016). Altered levels of circulating cytokines and microRNAs in lean and obese individuals with prediabetes and type 2 diabetes. Mol Biosyst. 2016 Dec 20; 13(1): 106-121.
[13] Spriggs, K. A, Bushell, M., Willis, A. E. (2010). Translational regulation of gene expression during conditions of cell stress. Mol Cell. 2010 Oct 22; 40(2): 228-37.
[14] Raitoharju, E., Seppälä, I., Oksala, N., Lyytikäinen, L. P., Raitakari, O., Viikari, J., et al. (2014). Blood microRNA profile as-sociates with the levels of serum lipids and metabolites associated with glucose metabolism and insulin resistance and pinpoints pathways underlying metabolic syndrome: the cardiovascular risk in Young Finns Study. Mol Cell Endocrinol. 2014 Jun 25; 391(1-2): 41-9.
[15] Obert J, A. Frost Eric, N. Olson, et al. (2011). Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci USA. 2011, 27; 108(52): 21075-80.
[16] Xie, S., Xie, N., Li, Y., et al. (2012). Upregulation of TRB2 induced by miR-98 in the early lesions of large artery of type-2 diabetic rat. Mol Cell Biochem. 2012; 361(1-2): 305-14.
[17] David E. Cummings, Francesco Rubino. (2018). Metabolic surgery for the treatment of type 2 diabetes in obese individu-als.Diabetologia. 2018 Feb; 61(2): 257-264.
[18] Chen, H., Charlat, O., Tartaglia, L. A., Woolf, E. A., Weng, X., Ellis, S. J., et al. (1996). Evidence that the diabetes gene encodes the leptin receptor: identication of a mutation in the leptin receptor gene in db/db mice. Cell, 1996 Feb 9; 84(3): 491-5.
[19] Kornfeld, J. W., Baitzel, C., Könner, A. C., Nicholls, H. T., Vogt, M. C., Herrmanns, K., et al. (2013). Obesity-induced over-expression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature. 2013 Feb 7; 494(7435): 111-5.
[20] Yun-Feng Zhen,Yun-Jia Zhang, Hang Zhao, et al. (2018). MicroRNA-802 regulates hepatic insulin sensitivity and glucose metabolism. Int J Clin Exp Pathol. 2018 May 1; 11(5): 2440-2449.
[21] Jordan, S. D., Krüger, M., Willmes, D. M., Redemann, N., Wunderlich, F. T., Brönneke, H. S., et al. (2011). Obesiy-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metablolism. Nat Cell Biol. 2011 Apr; 13(4): 434-46.
[22] Saltiel, A. R., and Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001 Dec 13; 414(6865): 799-806.
[23] Tamemoto, H., Kadowaki, T., Tobe, K., Yagi, T., Sakura, H., Hayakawa, T., et al. (1994). Insulin resistance and growth retar-dation in mice lacking insulin receptor substrate-1. Nature. 1994 Nov 10; 372(6502): 182-6.
[24] Withers, D. J., Gutierrez, J. S., Towery, H., Burks, D. J., Ren, J. M., Previs, S., et al. (1998). Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 1998 Feb 26; 391(6670): 900-4.
[25] Ryu, H. S., Park, S. Y., Ma, D., Zhang, J., Lee, W. (2011). The Induction of MicroRNA Targeting IRS-1 Is Involved in the Development of Insulin Resistance under Conditions of Mitochondrial Dysfunction in Hepatocytes. PLoS One. 2011 Mar 25; 6(3): e17343.
[26] Karolina, D. S., Armugam, A., Tavintharan, S., Wong, M. T., Lim, S. C., Sum, C. F., et al. (2011). MicroRNA 144 Impairs Insulin Signaling by Inhibiting the Expression of Insulin Receptor Substrate 1 in Type 2 Diabetes Mellitus. PLos One. 2011; 6(8): e22839.
[27] Kajimoto, K., Naraba, H., Iwai, N. (2006). MicroRNA and 3T3-L1 preadipocyte differentiation. RNA 2006. 12, 1626e1632.
[28] L. F. del Aguila, K. P. Claffey, J. P. Kirwan. (1999). TNF-alpha impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells. Am. J. Physiol. Am J Physiol. 1999 May; 276(5 Pt 1): E849-55.
[29] Cao, L., Lin, E. J., Cahill, M. C., Wang, C., Liu, X., During, M. J. (2009). Molecular therapy of obesity and diabetes by a phy-siological autoregulatory approach. Nat Med. 2009 Apr; 15(4): 447-54.