References
[1] Subaedah, S., Aladin, A., and Nirwana. (2016). Fertilization of Nitrogen, Phosphor and Application of Green Manure of Crotalaria juncea in Increasing Yield of Maize in Marginal Dry Land. Agriculture Agricultural Science Procedia, 9, 20-25. http://dx.doi.org/10.1016/j.aaspro.2016.02.114.
[2] Arias, L., Losada, H., Rendón, A., Grande, D., Vieyra, J., Soriano, R., Rivera, J. and Cortés, J. (2003). Evaluation of Chipilín (Crotalaria longirostrata) as a forage resource for ruminant feeding in the tropical areas of Mexico. Livestock Research for Rural Development, 15. http://www.lrrd.org/lrrd15/4/aria154.htm.
[3] László, M. (2009). Crotalaria (Crotalaria juncea L.) Heavy Metal Uptake in Eastern Hungary. Geophysical Research Abstracts, 11, EGU2009-1374.
[4] Ouédraogo, L., Sandwidi, A., Coulibaly, P. J. d'Arc, Bassolé, M. S., Fofana, B., Blagna, F., Ouattara, B. and Diallo, B.O. (2024). Effect of Legume Ecotypes in Some Physicochemical Properties of Soil. Universal Journal of Agricultural Research, 12(2), 310-320. https://doi.org/10.13189/ujar.2024.120208.
[5] Al-Snafi, A. E. (2017). The contents and pharmacology of Crotalaria juncea—A review. IOSR Journal of Pharmacy, 6(6), 77-86. https://doi.org/10.9790/3013-06067786.
[6] Alalade, J. A., Akinlade, J. A., Akingbade, A. A., Emiola, C. B., and Adebisi, I. A. (2019). Proximate Composition and Phytochemical Screenings of Crotalaria retusa Leaves and Seeds. Open Access Library Journal, 6, e5058.
https://doi.org/10.4236/oalib.1105058.
[7] Rocha, A. L. (2011). Isolation and characterization of bacterial symbionts from Crotalaria spectabilis grown on trichloroethene contaminated soil. Master's Thesis, Missouri University of Science and Technology, 6909. https://doi.org/10.25388/mst.edu.6909.
[8] Barbosa, I. R., Santana, R. S., Mauad, M., and Garcia, R. A. (2020). Dry matter production and nitrogen, phosphorus and potas-sium uptake in Crotalaria juncea and Crotalaria spectabilis. Pesquisa Agropecuária Tropical, 50, e61011.
https://doi.org/10.1590/1983-40632020v5061011.
[9] Tulu, D., Gadissa, S., Hundessa, F., and Kebede, E. (2023). Contribution of Climate-Smart Forage and Fodder Production for Sustainable Livestock Production and Environment: Lessons and Challenges from Ethiopia. Advances in Agriculture, 2023, 11 pages. https://doi.org/10.1155/2023/8067776.
[10] De Souza, A. J., Santos, E., Ribeiro, F. P., Pereira, A. P. de A., Viana, D. G., Coelho, I. da S., Filho, F. B. E., and Santaren, K.C.F. (2023). Crotalaria juncea L. enhances the bioremediation of sulfentrazone-contaminated soil and promotes changes in the soil bacterial community. Brazilian Journal of Microbiology, 54, 2319-2331. https://doi.org/10.1007/s42770-023-00777-5.
[11] Daimon, H. (2006). Traits of the Genus Crotalaria Used as a Green Manure Legume on Sustainable Cropping Systems. Japan Agricultural Research Quarterly, 40(4), 299-305. https://doi.org/10.6090/jarq.40.299.
[12] Ouachinou, J. M. A. S., Dassou, G. H., Azihou, A. F., Adomou, A. C., and Yédomonhan, H. (2018). Breeders’ knowledge on cattle fodder species preference in rangelands of Benin. Journal of Ethnobiology and Ethnomedicine, 14, 66.
https://doi.org/10.1186/s13002-018-0264-1.
[13] WF, H., GEF, L., HA, B. and Hoffman, J. I. (1953). Applied Inorganic Analysis. 2nd ed. Wiley: New York.
[14] Keeney, D. R. and Nelson, D. W. (1996). Nitrogen—Inorganic Forms. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; A. L. Page, Ed.; Agronomy Monograph No. 9; ASA and SSSA: Madison, WI, USA, 1996; pp. 643-698.
[15] Jilani, A., Soulimani, R., and Dicko, A. (2006). New extraction technique for alkaloids. Journal of the Brazilian Chemical Society, 17(3), 518-520. https://doi.org/10.1590/S0103-50532006000300012.
[16] AOAC. (1990). Official Methods of Analysis of the AOAC (15th ed.). Arlington, VA, USA: Association of Official Analytical Chemists.
[17] Sońta, M., and Rekiel, A. (2020). Legumes – Use for nutritional and feeding purposes. Journal of Elementology, 25(3), 835-849. https://doi.org/10.5601/jelem.2020.25.3.2003.
[18] Kone, A. W., Tondoh, J. E., Aduramigba-Modupe, V. O., Deleporte, P., Orendo-Smith, R., and Brunet, D. (2017). Legume and mineral fertilizer derived nutrient use efficiencies by maize in a Guinea savannah of Cote d'Ivoire. Agronomy Africaine, 29(1), 33-48.
[19] Gatsios, A., Ntatsi, G., Celi, L., Said-Pullicino, D., Tampakaki, A., and Savvas, D. (2021). Legume-Based Mobile Green Manure Can Increase Soil Nitrogen Availability and Yield of Organic Greenhouse Tomatoes. Plants, 10, 2419.
https://doi.org/10.3390/plants10112419.
[20] Wang, Q., Liu, J., and Zhu, H. (2018). Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions. Frontiers in Plant Science, 9, 313. https://doi.org/10.3389/fpls.2018.00313.
[21] Santos, L. F. da C. dos, López, C. J. A., Medina, H. E., and Osornio, J. J. (2023). Growth and mineral composition of legume cover crops for sustainable agriculture in southern Mexico. Tropical Agriculture, 100(3), 182-190.
[22] Grela, E. R., Samolińska, W., Kiczorowska, B., Klebaniuk, R., and Kiczorowski, P. (2017). Content of Minerals and Fatty Acids and Their Correlation with Phytochemical Compounds and Antioxidant Activity of Leguminous Seeds. Biological Trace Element Research, 180, 338-348. https://doi.org/10.1007/s12011-017-1003-7.
[23] Juknevičius, S., and Sabienė, N. (2007). The content of mineral elements in some grasses and legumes. Ekologija, 53(1), 44-52.
[24] Turmel, M.-S., Speratti, A., Baudron, F., Verhulst, N., and Govaerts, B. (2014). Crop residue management and soil health: A systems analysis. Agricultural Systems, 134, 6-16. https://doi.org/10.1016/j.agsy.2014.05.009.
[25] Fu, B., Chen, L., Huang, H., Qu, P., and Wei, Z. (2021). Impacts of crop residues on soil health: A review. Environmental Pollution and Bioavailability, 33(1), 164-173. https://doi.org/10.1080/26395940.2021.1948354.
[26] Rawat, R., and Saini, C. S. (2022). Effect of soaking conditions in the reduction of antinutritional factors in sunnhemp (Crotalaria juncea) seeds. Food Chemistry Advances, 1, 100092. https://doi.org/10.1016/j.focha.2022.100092.
[27] Huang, Q., Liu, X., Zhao, G., Hu, T., and Wang, Y. (2018). Potential and challenges of tannins as an alternative to in-feed antibi-otics for farm animal production. Animal Nutrition, 4(2), 137–150. https://doi.org/10.1016/j.aninu.2017.09.004.
[28] Thorringer, N. W. and Jensen, R. B. (2021). Methodical considerations when estimating nutrient digestibility in horses using the mobile bag technique. Animal, 15(1), 100050. https://doi.org/10.1016/j.animal.2020.100050.