magazinelogo

International Journal of Food Science and Agriculture

ISSN Print: 2578-3467 Downloads: 171230 Total View: 2648179
Frequency: quarterly ISSN Online: 2578-3475 CODEN: IJFSJ3
Email: ijfsa@hillpublisher.com
Article http://dx.doi.org/10.26855/ijfsa.2024.09.004

Comparative Nutritional and Organic Matter of Leaves and Pods from Herbaceous Papilionaceae Ecotype

Lassané Ouédraogo1,3,*, Coulibaly Pane Jeanne d'Arc1, Abdoulazize Sandwidi1,2, Fanta Blagna1, Barkissa Fofana1, Badiori Ouattara1, Boukari Ousmane Diallo1, Martin Kiendrebeogo3

1National Research Centre for Science and Technology (CNRST), Environment and Agricultural Research Institute (INERA), 03 BP7047 Ouagadougou, Burkina Faso.

2University Centre of Dori, University of Thomas Sankara, 12 BP 417 Ouagadougou, Saaba, Burkina Faso.

3Laboratory of Applied Biochemistry and Chemistry, Joseph Ki-Zerbo University, 03 BP 7021 Ouagadougou, Burkina Faso.

*Corresponding author: Lassané Ouédraogo

Published: September 5,2024

Abstract

Crotalaria mucronata and Crotalaria retusa are leguminous plants with potential in their leaves, pods, and seeds. However, this potential remains largely underutilized. This study aimed to assess the nutritional content, organic matter, and antinutritional factors in the leaves and pods (including seeds) of C. mucronata and C. retusa from various ecotypes in Burkina Faso. The organic matter content was determined from the organic carbon content. Na was determined with a flame photometer. N, Cu, P, Mg, Mn, and Zn with the atomic absorption spectrophotometer. Alkaloids were determined by gravimetry. Tannins were determined using the AOAC method. Significant variations in nutrient and element content were observed across ecotypes, especially for nitrogen (for leaves, p = 0.021 and pods, p = 0.0001), phosphorus (for leaves p = 0.0001 and pods p = 0.0001), sodium (for leaves, p = 0.001 and pods, p = 0.002), manganese (for leaves, p = 0.006 and pods, p = 0.001) and magnesium (for leaves, p = 0.049). High organic matter content was found in both leaves (91 ± 1 mg/kg) and pods (96.67 ± 7.05 mg/kg). Nitrogen content was highest in leaves from Gonsé (27 ± 3 g/kg) and pods from Arbollé (29.83 ± 1.00 g/kg). Phosphorus levels ranged from 1.72 to 2.79 g/kg in leaves and 1.82 to 3.34 g/kg in pods. Sodium content was relatively low compared to some other legumes. Magnesium levels were highest in pods (up to 1701 ± 12.6 mg/kg) and lower in leaves. The pods and leaves can be used as organic matter or as potential forage.

References

[1] Subaedah, S., Aladin, A., and Nirwana. (2016). Fertilization of Nitrogen, Phosphor and Application of Green Manure of Crotalaria juncea in Increasing Yield of Maize in Marginal Dry Land. Agriculture Agricultural Science Procedia, 9, 20-25. http://dx.doi.org/10.1016/j.aaspro.2016.02.114.

[2] Arias, L., Losada, H., Rendón, A., Grande, D., Vieyra, J., Soriano, R., Rivera, J. and Cortés, J. (2003). Evaluation of Chipilín (Crotalaria longirostrata) as a forage resource for ruminant feeding in the tropical areas of Mexico. Livestock Research for Rural Development, 15. http://www.lrrd.org/lrrd15/4/aria154.htm.

[3] László, M. (2009). Crotalaria (Crotalaria juncea L.) Heavy Metal Uptake in Eastern Hungary. Geophysical Research Abstracts, 11, EGU2009-1374.

[4] Ouédraogo, L., Sandwidi, A., Coulibaly, P. J. d'Arc, Bassolé, M. S., Fofana, B., Blagna, F., Ouattara, B. and Diallo, B.O. (2024). Effect of Legume Ecotypes in Some Physicochemical Properties of Soil. Universal Journal of Agricultural Research, 12(2), 310-320. https://doi.org/10.13189/ujar.2024.120208. 

[5] Al-Snafi, A. E. (2017). The contents and pharmacology of Crotalaria juncea—A review. IOSR Journal of Pharmacy, 6(6), 77-86. https://doi.org/10.9790/3013-06067786.

[6] Alalade, J. A., Akinlade, J. A., Akingbade, A. A., Emiola, C. B., and Adebisi, I. A. (2019). Proximate Composition and Phytochemical Screenings of Crotalaria retusa Leaves and Seeds. Open Access Library Journal, 6, e5058. 

https://doi.org/10.4236/oalib.1105058.

[7] Rocha, A. L. (2011). Isolation and characterization of bacterial symbionts from Crotalaria spectabilis grown on trichloroethene contaminated soil. Master's Thesis, Missouri University of Science and Technology, 6909. https://doi.org/10.25388/mst.edu.6909.

[8] Barbosa, I. R., Santana, R. S., Mauad, M., and Garcia, R. A. (2020). Dry matter production and nitrogen, phosphorus and potas-sium uptake in Crotalaria juncea and Crotalaria spectabilis. Pesquisa Agropecuária Tropical, 50, e61011. 

https://doi.org/10.1590/1983-40632020v5061011.

[9] Tulu, D., Gadissa, S., Hundessa, F., and Kebede, E. (2023). Contribution of Climate-Smart Forage and Fodder Production for Sustainable Livestock Production and Environment: Lessons and Challenges from Ethiopia. Advances in Agriculture, 2023, 11 pages. https://doi.org/10.1155/2023/8067776.

[10] De Souza, A. J., Santos, E., Ribeiro, F. P., Pereira, A. P. de A., Viana, D. G., Coelho, I. da S., Filho, F. B. E., and Santaren, K.C.F. (2023). Crotalaria juncea L. enhances the bioremediation of sulfentrazone-contaminated soil and promotes changes in the soil bacterial community. Brazilian Journal of Microbiology, 54, 2319-2331. https://doi.org/10.1007/s42770-023-00777-5.

[11] Daimon, H. (2006). Traits of the Genus Crotalaria Used as a Green Manure Legume on Sustainable Cropping Systems. Japan Agricultural Research Quarterly, 40(4), 299-305. https://doi.org/10.6090/jarq.40.299.

[12] Ouachinou, J. M. A. S., Dassou, G. H., Azihou, A. F., Adomou, A. C., and Yédomonhan, H. (2018). Breeders’ knowledge on cattle fodder species preference in rangelands of Benin. Journal of Ethnobiology and Ethnomedicine, 14, 66. 

https://doi.org/10.1186/s13002-018-0264-1.

[13] WF, H., GEF, L., HA, B. and Hoffman, J. I. (1953). Applied Inorganic Analysis. 2nd ed. Wiley: New York. 

[14] Keeney, D. R. and Nelson, D. W. (1996). Nitrogen—Inorganic Forms. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; A. L. Page, Ed.; Agronomy Monograph No. 9; ASA and SSSA: Madison, WI, USA, 1996; pp. 643-698. 

[15] Jilani, A., Soulimani, R., and Dicko, A. (2006). New extraction technique for alkaloids. Journal of the Brazilian Chemical Society, 17(3), 518-520. https://doi.org/10.1590/S0103-50532006000300012. 

[16] AOAC. (1990). Official Methods of Analysis of the AOAC (15th ed.). Arlington, VA, USA: Association of Official Analytical Chemists.

[17] Sońta, M., and Rekiel, A. (2020). Legumes – Use for nutritional and feeding purposes. Journal of Elementology, 25(3), 835-849. https://doi.org/10.5601/jelem.2020.25.3.2003.

[18] Kone, A. W., Tondoh, J. E., Aduramigba-Modupe, V. O., Deleporte, P., Orendo-Smith, R., and Brunet, D. (2017). Legume and mineral fertilizer derived nutrient use efficiencies by maize in a Guinea savannah of Cote d'Ivoire. Agronomy Africaine, 29(1), 33-48.

[19] Gatsios, A., Ntatsi, G., Celi, L., Said-Pullicino, D., Tampakaki, A., and Savvas, D. (2021). Legume-Based Mobile Green Manure Can Increase Soil Nitrogen Availability and Yield of Organic Greenhouse Tomatoes. Plants, 10, 2419. 

https://doi.org/10.3390/plants10112419.

[20] Wang, Q., Liu, J., and Zhu, H. (2018). Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions. Frontiers in Plant Science, 9, 313. https://doi.org/10.3389/fpls.2018.00313.

[21] Santos, L. F. da C. dos, López, C. J. A., Medina, H. E., and Osornio, J. J. (2023). Growth and mineral composition of legume cover crops for sustainable agriculture in southern Mexico. Tropical Agriculture, 100(3), 182-190.

[22] Grela, E. R., Samolińska, W., Kiczorowska, B., Klebaniuk, R., and Kiczorowski, P. (2017). Content of Minerals and Fatty Acids and Their Correlation with Phytochemical Compounds and Antioxidant Activity of Leguminous Seeds. Biological Trace Element Research, 180, 338-348. https://doi.org/10.1007/s12011-017-1003-7.

[23] Juknevičius, S., and Sabienė, N. (2007). The content of mineral elements in some grasses and legumes. Ekologija, 53(1), 44-52. 

[24] Turmel, M.-S., Speratti, A., Baudron, F., Verhulst, N., and Govaerts, B. (2014). Crop residue management and soil health: A systems analysis. Agricultural Systems, 134, 6-16. https://doi.org/10.1016/j.agsy.2014.05.009.

[25] Fu, B., Chen, L., Huang, H., Qu, P., and Wei, Z. (2021). Impacts of crop residues on soil health: A review. Environmental Pollution and Bioavailability, 33(1), 164-173. https://doi.org/10.1080/26395940.2021.1948354.

[26] Rawat, R., and Saini, C. S. (2022). Effect of soaking conditions in the reduction of antinutritional factors in sunnhemp (Crotalaria juncea) seeds. Food Chemistry Advances, 1, 100092. https://doi.org/10.1016/j.focha.2022.100092.

[27] Huang, Q., Liu, X., Zhao, G., Hu, T., and Wang, Y. (2018). Potential and challenges of tannins as an alternative to in-feed antibi-otics for farm animal production. Animal Nutrition, 4(2), 137–150. https://doi.org/10.1016/j.aninu.2017.09.004.

[28] Thorringer, N. W. and Jensen, R. B. (2021). Methodical considerations when estimating nutrient digestibility in horses using the mobile bag technique. Animal, 15(1), 100050. https://doi.org/10.1016/j.animal.2020.100050.

How to cite this paper

Comparative Nutritional and Organic Matter of Leaves and Pods from Herbaceous Papilionaceae Ecotype

How to cite this paper: Lassané Ouédraogo, Coulibaly Pane Jeanne d'Arc, Abdoulazize Sandwidi, Fanta Blagna, Barkissa Fofana, Badiori Ouattara, Boukari Ousmane Diallo, Martin Kiendrebeogo. (2024) Comparative Nutritional and Organic Matter of Leaves and Pods from Herbaceous Papilionaceae EcotypeInternational Journal of Food Science and Agriculture8(3), 112-118.

DOI: https://dx.doi.org/10.26855/ijfsa.2024.09.004