References
[1] P. Lesaint, T.R. Hill, Triangular mesh methods for the neutron Transport Equation, Technical report, LA-UR-73-479, Los Alamos scientific laboratory, Los Alamos, NM, 1973.
[2] P. Lax, N. Milgram, Parabolic Equations. Contributions to the Theory of Partial Differential Equations, Princeton University Press, Princeton, NJ, 1954.
[3] B. Cockburn, G. E. Karniadakis, C.-W. Shu. (eds.). Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, 11. Springer-Verlag, Berlin, 2000.
[4] Beatrice Riviere: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations; Theory and Implementation, SIAM, DOI: 10.1137/1.9780898717440, January 2008.
[5] J. S. Hesthaven, T. Warburton. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Ukraine: Springer, 2008, New York.
[6] P. E. Lewis, J.P. Ward. The Finite Element Method; Principles and Application; Addition – Wesley, 1991.
[7] D.N. Arnold. An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19, 1982, 742-760.
[8] R. Becker, P. Hansbo, M.G. Larson: Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg. 192, 2003, 723-733.
[9] C. Carstensen, T. Gudi, M. Jensen. A unifying theory of a posteriori error control for discontinuous Galerkin FEM. Numer. Math., 112, 2009, 363-379.
[10] B. Cockburn. Discontinuous Galerkin methods for convection-dominated problems. In: High-order Methods for Computational Physics, Springer, Berlin, 1999, 69-224.
[11] B. Cockburn, G.E. Karniadakis, C.-W. Shu. (eds.). Discontinuous Galerkin Methods. Theory, computation and applications. Papers from the 1st International Symposium held in Newport, RI, May 24-26, 1999. SpringerVerlag, Berlin, 2000.
[12] E.H. Georgoulis. Discontinuous Galerkin Methods on Shape-Regular and Anisotropic Meshes. D.Phil. Thesis, University of Oxford, 2003.
[13] Sjodin, Bjorn. What is the Difference Between FEM, FDM, and FVM? COMSOL, Mon, 2016-04-18, Machine Design.
[14] B. Cockburn, G. E. Karniadakis, C.-W. Shu. (eds.). Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, 11. Springer-Verlag, Berlin, 2000.
[15] I. Babu˘ska. The finite element method with Lagrangian multipliers. Numerische Mathematik, 20 (1973), pp. 179-192.
[16] S. Brenner, L. Scott. The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 1994.
[17] B. Cockburn, G. Kanschat, D. Schötzau. The local discontinuous Galerkin method for the Oseen equations, Mathematics of Computation, 73 (2003), pp. 569-593.
[18] Hailiang Liu, Jue Yan. The Direct Discontinuous Galerkin (DDG) Methods For Diffusion Problems, SIAM J. NUMER. ANAL. Vol. 47, No. 1, pp. 675-698.
[19] Hailiang Liu, Jue Yan. The Direct Discontinuous Galerkin (DDG) Method for Diffusion with Interface Corrections, Commun. Comput. Phys., Vol. 8, No. 3, pp. 541-564
[20] I. Babu˘ska, C. Baumann, and J. Oden. A discontinuous hp finite element method for diffusion problems: 1-D analysis, Computers & Mathematics with Applications, 37 (1999), pp. 103-122.
[21] Hossain M.S, Xiong C, Sun H. A priori and a posteriori error analysis of the first order hyperbolic equation by using DG method. PLoS ONE, 2023, 18(3): e0277126. https://doi.org/10.1371/journal.pone.0277126.
[22] Hossain, M.S., Xiong, C. An Error Analysis of the CN Weighed DG θ Method of the Convection Equation. Mathematics, 2021, 9, 970. https://doi.org/10.3390/math9090970.