References
[1] Sethi, S. P. and G. L. Thompson. (2000). Optimal Control Theory: Applications to Management Science and Economics, Kluwer, Boston, 2nd edition.
[2] S. Lenhart, J. Workman. (2007). Optimal control applied to biological models. Taylor and Francis, Boca Raton.
[3] Looker KJ, Garnett GP, Schmid GP. (2008). An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection. Bull World Health Organ., vol. 86(10):805-812.
[4] C.N. Podder and A. B. Gumel. (2010). Qualitative dynamics of a vaccination model for HSV-2. IMA Journal of Applied Mathematics, vol. 75 (1): 75-107.
[5] W. H. Fleming and R. W. Rishel. (1975). Deterministic and Stochastic Optimal Control. Springer-Verlag.
[6] William E. Boyce and Richard C. DiPrima. (2009). Elementary Differential Equations and Boundary Value Problems. John Wiley and Sons, New York.
[7] Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelize, and E. F. Mishchenko. (1962). The Mathematical Theory of Optimal Processes, New York, Wiley.
[8] Michael, T.H. (2002). Scientific Computing: An introductory survey. Second edition, The McGraw-Hill, New York.
[9] H. M. Yang and A. R. R. Freitas. (2019). Biological view of vaccination described by mathematical modellings: from rubella to dengue vaccines. Mathematical Biosciences and Engineering, vol. 16(4):3195-3214.
[10] L. B, E. Z, and A. Z. (2022). Dynamical behaviors of an SIR epidemic model with discrete time. Fractal Fract., vol. 6(11):659.
[11] Bibi Fatima, Mehmet Yavu, Mati Ur Rahman, Fuad S Al-Duais. (2023). Modeling the epidemic trend of middle eastern respiratory syndrome coronavirus with optimal control. Mathematical Biosciences and Engineering, vol. 20(7):11847-11874.
[12] M. N. V, M. Z. E, A. O, et al. (2021). The impact of rubella vaccine introduction on rubella infection and congenital rubella syndrome: a systematic review of mathematical modelling studies. Vaccines, vol. 9 (2): 84.
[13] Corey L, Wald A. Genital Herpes. (1999). Sexually transmitted diseases. In: Holmes KK, Sparling PF, Mardh PA, et al, eds. New York, NY: McGraw-Hill, pp. 285-312.
[14] G. Zaman, Y. Kang, I. Jung. (2008). Stability analysis and optimal vaccination of an SIR epidemic model. BioSystems, vol. 93: 240-249.
[15] Gaff, E. Schaefer. (2009). Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences and Engineering, vol. 6: 469-492.
[16] Kaminester L., Pariser R., Pariser D., Weiss J., Shavin J., Landsman L., Haines H., and Osborne D. (1999). A double-blind, pla-cebo-controlled study of topical tetracaine in the treatment of herpes labialis. Journal of the American Academy of Dermatology, vol. 41(6): 996-1001.