References
[1] Douglas, A. L. and Marcus, B. (1995). An Introduction to Symbolic Dynamics and Coding. Cambridge University Press.
[2] Bhaumik, I. and Choudhury, B. S. (2010). A Note on the Genaralized Shift Map. General Mathematics Notes, 1, 154-160.
[3] Bhaumik, I. and Choudhury, B. S. (2010). Some Stronger Chaotic Features of the Genaralized Shift Map. Interna-tional Journal of Pure and Applied Sciences and Technology, 1(2), 79-86.
[4] Du, B. S. (1998). A dense orbit almost implies sensitivity to initial conditions. Bulletin of the Institute of Mathemat-ics Academia Sinica, 26,85-94.
[5] Biswas H. R. (2017). Investigation of chaoticity of the generalized shift map under a new definition of chaos and compare with shift map, Barisal University Journal Part 1, 4(2), 261-270.
[6] Ju H., Shao H., Choe Y., and Shi Y. (2016). Conditions for maps to be topologically conjugate or semi-conjugate to subshifts of finite type and criteria of chaos. Dynamical Systems, International Journal, 31(4). https: //doi.org/ 10.1080/14689367.2016.1158240.
[7] Biswas H. R. and Monirul M. Islam. (2020). Shift Map and Cantor Set of Logistic Function. IOSR Journal of Ma-thematics, 16(3), 01-08.
[8] Li, T. Y. and Yorke J. A. (1975). Period three implies chaos. The American Mathematical Monthly, 82(10), 985-992.
[9] Auslander, J. and Yorke, J. A. (1980). Interval maps factors of maps and chaos. Tohoku Mathematical Journal, 32, 177-188.
[10] Devaney, R. L. (1989). An introduction to chaotic dynamical systems. 2nd edition, New York: Addison-Wesley, Redwood City, CA.
[11] Banks, J., Brooks, J., Cairns, G., Davis, G., and Stacey, P. (1992). On Devaney’s definition of chaos. American Mathematical Monthly, 99, 332-334.
[12] Snoha, L. (1992). Dense chaos. Commentationes Mathematicae Universitatis Carolinae, 33, 747-752.
[13] Du, B. S. (2005). On the invariance of Li-Yoke chaos of interval maps. Journal of Difference Equations and Appli-cations, 11, 823-826.
[14] Parry, W. (1966). Symbolic dynamics and transformation of the unit interval. Transactions of the American Ma-thematical Society, 122(2), 368-378.
[15] Robinson, C. (1999). Dynamical System: Stability, Symbolic Dynamics and Chaos. Second Edition, CRC Press, Boca Raton, FL.
[16] Blanchard, F., Glasner, E., Kolyada, S., and Maass, A. (2000). On Li-Yorke pairs. J. Rei. Ange. Math, 547, 51-68.
[17] Ruette, S. (2003). Chaos for continuous interval maps, www.math.u- psud.fr/ruette/, December.
[18] Shao, H., Shi, Y., and Zhu, Y. (2018). Relationships among some chaotic properties of non-autonomous discrete dynamical systems, Journal of Difference Equations and Applications, https: // doi.org/ 10.1080/10236198.2018.1458101.
[19] Wang, X. and Huang, Y. (2013). Devancy chaos revisited. Topology and its Applications, (160), 455-460.
[20] Denker, M., C. Grillenberger, C., and Sigmund, K. (1976). Ergodic theory on compact metric spaces. Lecture Notes in Mathematics, 527, Springer-Verlag.
[21] Lu, T., Xhu, P., and Wu, X. (2013). The Retentivity of Chaos under Topological Conjugation. Mathematical Prob-lem in Engineering, Article ID 817831.https://doi.org/10.1155/2013/817831.
[22] Ramos, C. C. (2020). Kinematics in Biology: Symbolic Dynamics Approach, Mathematics. 8, 339. https://doi.org/10.3390/math8030339.
[23] Daniel, P. B. C., Carlos E. C. S., and Cecilio, P. (2016). A smooth chaotic map with parameterized shape and sym-metry. EURSIP Journal on Advances in Signal Processing.
[24] Kitchens, B. P. (1998). Symbolic Dynamics-one sided, Two sided and Countable State Markov Shifts. Universitext, Springer Verlag, Berlin.