References
[1] Ger P A, Bongaerts I, Ronney D A. Considerations for the selection of suitable energy sources needed for future worldwide energy consumption. Innov. Energy Polic., 2012,2: 1-6.
[2] Virmond E, Rocha J D, Moreira R F P M, et al.. Valrization of agroindustrial solid residues and residues from biofuel production chains by thermochemical conversion a review , citing brazil as a case study. Brazilian J. Chem. Engin., 2013, 30( 2) : 197-229.
[3] Li C J, Yang X, Zhang Z, et al.. Hydrothermal liquefaction of desert shrub salix Psammophila to high value-added chemicals and hydrochar with recycled processing water. Biol.Resour., 2013, 8 ( 2) : 2981-2997.
[4] Bae Y J, Ryu C, Jeon J K, et al.. The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresour. Technol., 2011, 102: 3512-3520.
[5] Peterson A A, Vogel F, Lachance R P, et al.. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci.,2008, 1 (1): 32-65.
[6] Dote Y, Zhang L, Zhang S C, et al.. Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel, 1994, 73(12): 1855-1857.
[7] Inoue S, Dote Y, Sawayama S, et al.. Analysis of oil derived from liquefaction of Botryococcus braunii. Biomass Bioenergy, 1994, 6 (4):269-274.
[8] Minowa T, Yokoyama S, Okakura T, et al.. Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel, 1995, 74 (12): 1735-1738.
[9] Sawayama S, Minowa T, Yokoyama S Y. Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy, 1999, 17(1): 33-39.
[10] Patil V, Tran K Q, Giselrd H R. Towards sustainable production of biofuels from microalgae. Internat. J. Mol. Sci., 2008, 9(7): 1188-1195.
[11] Biller P. Hydrothermal processing of microalgae. England Leeds: University of Leeds , Doctoral Dissertation, 2013.
[12] Vardon D R. Hydrothermal liquefaction for energy recovery from high-moisture waste biomass. USA Illioniis: University of Illinois at Urbana-Champaign, Master Dissertation, 2012.
[13] Talukder M M R, Das P, Wu J C. Microalgae ( Nannochloropsis salina) biomass to lactic acid and lipid. Biochem. Engin. J., 2012, 68: 109-113.
[14] Garcia A L, Torri C, SamorìC, et al.. Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy fuels, 2011, 26(1): 642-657.
[15] Levine R B, Pinnarat T, Savage P E. Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuels, 2010, 24(9): 5235-5243.
[16] Elliott D C, Hart T R, Neuenschwander G G, et al.. Hydrothermal processing of macroalgal feedstocks in continuous-flow reactors. ACS Sustain. Chem. Engin., 2013, 2(2): 207-215.
[17] Wargacki A J, Leonard E, Win M N, et al.. An engineered microbial platform for direct biofuel production from brown macroalgae. Science, 2012, 335(6066): 308-313.
[18] Lee H W, Jeon J K, Park S H, et al.. Catalytic pyrolysis of Laminaria japonica over nanoporous catalysts using Py-GC/MS. Nanoscale Res. Lett., 2011, 6(1): 1-7.
[19] Johnson M C. Hydrothermal processing of high-lipid biomass to fuels. Massachusetts: Massachusetts Institute of Technology, Master Dissertation, 2012.
[20] Biller P. Hydrothermal processing of microalgae. England Leeds: University of Leeds , Doctoral Dissertation, 2013.
[21] Vardon D R. Hydrothermal liquefaction for energy recovery from high-moisture waste biomass. USA Illioniis: University of Illinois at Urbana-Champaign, Master Dissertation, 2012.
[22] Talukder M M R, Das P, Wu J C. Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid. Biochem. Engin. J., 2012, 68: 109-113.
[23] Garcia A L, Torri C, SamorìC, et al.. Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy fuels, 2011, 26(1): 642-657.
[24] Levine R B, P innarat T, Savage P E. Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuels, 2010, 24 (9): 5235-5243.
[25] Elliott D C, Hart T R, Neuenschwander G G, et al.. Hydrothermal processing of macroalgal feedstocks in continuous-flow reactors. ACS Sustain. Chem. Engin., 2013, 2(2): 207-215.
[26] Martín M, Grossmann I E. Optimal engineered algae composition for the integrated simultaneous production of bioethanol and biodiesel. AIChE J., 2013, 59(8): 2872-2883.
[27] Ahmad F, Khan A U, Yasar A. Transesterification of oil extracted from different species of algae for biodiesel production. African J. Environ. Sci. Technol., 2013, 7(6): 358-364.